
International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

AOP based Refactoring of Java Legacy System

E. Kodhai1, R. Ragha Sudha2, K. Reka3 and A. Amudha4

1 Sri Manakula Vinayagar Engineering College/Information Technology, Puducherry, India
Email: kodhaiej@gmail.com

2,3,4 Sri Manakula Vinayagar Engineering College/Information Technology, Puducherry, India
Email: raghasudha_r@yahoo.in, nila_selvi@yahoo.co.in, amudha3190@yahoo.com

Abstract—Maintenance and refactoring of legacy
System is difficult due to lack of necessary
documents and source codes. It is a great deal to
generate valuable information through refactoring.
Our Objective is to develop a class diagram and
sequence diagram from the binary byte code of a
java legacy system and then to obtain coding from
the developed diagrams. To trace the system
behaviors, the pattern of Aspectj concept namely
weaving is applied to resolve the binary byte codes
during runtime of the system.

Index Terms—refactoring, binary byte code, class
diagram, sequence diagram, Aspect

I. INTRODUCTION

The software development cycle always passes
through requirement analysis, design, coding, testing
and runtime maintenance. In fact, however, it needs
many efforts so that under the pressure of capital and
time, the developers only focus on coding (no proper
comments) and neglect the indispensable documents.
When time passed and developer alternated, many
valuable documents and source codes are lost while
only the binary executable files left. Although these
binary files can implement the predefined function, they
cannot be updated with any modification or extension
for no documents and source codes support. Then this
software evolves into a “legacy system” and becomes
more and more unmaintainable and it will be left
unused. For a legacy system of Java with source codes,
the current mature IDEs (Integrated Development
Environment), such as Eclipse Modeling Framework
[4] and NetBeans UML Modeling [5], only provide the
capability of reverse engineering from source codes to
documents or UML diagrams. But for a legacy system
with only binary executable files, they can not provide
program design information without source code help.
There are some Java decompilers which can find the
original source code to a degree. But they also have
some constraints and cannot get the precise program
structure. We utilize the techniques of reflection and
decompilation to generate the class diagrams from
binary bytecodes. Moreover, through weaving the stub
codes into original binary files to track the runtime
behaviors, we gracefully get the precise sequence
diagrams and class diagrams based on Aspectj concept.

The class diagram and sequence diagram of legacy
system can be generated automatically and very crucial
for system refactoring.

II. ASPECT-ORIENTED PROGRAMMING

 Aspect-oriented programming (AOP) is an
approach to programming that allows global properties
of a program to determine how it is compiled into an
executable program. AOP can be used with object-
oriented programming. Object oriented programming
has become mainstream over the last years, having
almost completely replaced the procedural approach.
One of the biggest advantages of object orientation is
that a software system can be seen as being built of a
collection of discrete classes. Each of these classes has
a well defined task; its responsibilities are clearly
defined. In an OO application, those classes collaborate
to achieve the application's overall goal. However, there
are parts of a system that cannot be viewed as being the
responsibility of only one class, they cross-cut the
complete system and affect parts of many classes.
Examples might be locking in a distributed application,
exception handling, or logging method calls. Of course,
the code that handles these parts can be added to each
class separately, but that would violate the principle
that each class has well-defined responsibilities. This is
where AOP comes into play: AOP defines a new
program construct, called an aspect, which is used to
capture cross-cutting aspects of a software system in
separate program entities. The application classes keep
their well-defined responsibilities. Additionally, each
aspect captures cross-cutting behavior.

The components of AOP are advices/interceptors,
introductions, metadata, and pointcuts. An advice /
interceptor is an object that intercept the invocation of a
method before its execution. Interceptor embodies the
behavior to add or remove or replace the functionality
of infrastructure. Perfect pluggability without changes
need for business logic is provided by Interceptor. An
introduction adds states and functionality to the existing
objects. Pointcuts allows defining the location of
interceptors and introductions are to applied. Metadata
provide information about class and runtime system
hints for treating the classes. For example, AOP
logging, monitoring of the code without instrumenting
with the code. For example, a method named Deposit

96

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

receives the arguments of Account NO and Amount,
then does the withdraw service. Before calling Deposit,
a necessary identity checking must be executed
automatically. Additionally, to audit this transaction, a
whole logging operations must be executed around
(before and after) Deposit service. Thus, any call of
Deposit method is worthy concerned, and this evolves
into a joinpoint. A pointcut is a joinpoint container
whose joinpoints have the same or similar features. A
pointcut is defined as follows:
 PointcutDepositPoint(String AccountNO, double
Amount):

Call(public void Deposit(..));

The locations of each call to the method Deposit are
named as DepositPoint.

 An advice is weaving the separated code with the
predefined pointcut to generate a composite service.
The weave type has three kinds: before, after and
around. The following is a before advice.

 Before(String AccountNO, double Amount):

DepositPoint(AccountNO, Amount){

……..//Write any code you need

. ……..// These codes will be weaved into the
entrance of Deposit and be executed before the body of
method. These can also access current program context
during runtime execution.

}

For the after weave type, the separated codes is
executed after the pointcut method finished. As to
another around weave type, its function is equal to
before type plus after type.

The whole trigger procedure of AOP is that: When
program execution reaches a predefined method or
variable, if it gets into a joinpoint, the main thread will
be suspended and sequently invoke the ownership
pointcut. According to the definition of pointcut, the
advice code will be executed with current program
context. After the advice code finished, the main thread
will resume and continue execution.

III. RELATED WORK

Object-oriented legacy system behavior is
distributed over many interacting objects, making it
necessary to test for complex collaboration scenarios.
The existing system [2] shows how to use the execution
traces as a basis for expressing tests. E.g.: Query library
using SOUL, a logic engine implemented in Smalltalk.
The architecture of TESTLOG consists of 5 top-down
layers for SOUL and one layer below Soul is for
Smalltalk. The bottom layer comprises an object-
oriented model that represents the execution trace. Each
trace is stored as an object in the Smalltalk image. At

the next abstraction level TESTLOG provides queries
to access single events and states.

Data flow analysis was originally used as a
technique for code optimization in compilers. It [3, 8]
has also been shown to be a useful technique in other
areas, such as performance tuning, testing, and
debugging. This study describes the fundamentals of
data flow analysis, and specifically dynamic data flow
analysis. The study concludes with a number of
requirements for new testing approaches using dynamic
data flow analysis. Dynamic data flow analysis is a
method for analyzing the sequence of actions on data in
a program as it is being run. Huang introduced tracing
the data flow anomalies through state transitions instead
of sequences of actions. When an action is applied on a
variable, its state follows transitions according to the
state transition diagram.

AOP is used for instrumenting the system and for
gathering the data. This approach [6] works and is
conceptually very clean, but comes with a major quid
pro quo: integration of AOP tools with the build system
proves an important issue. This leads to the question of
how to reconcile the notion of modular reasoning
within traditional build systems with a programming
paradigm which breaks this notion.

Another approach [7] that relates on a first attempt
to see if aspect-oriented programming (AOP) and logic
meta-programming (LMP) can help with the
revitalization of legacy business software. By means of
four realistic case studies covering reverse engineering,
restructuring and integration, it discuss the applicability
of the aspect-oriented paradigm in the context of two
major programming languages for legacy
environments: Cobol and C.

IV. PROPOSED SYSTEM

We proposed a general approach to get class
diagram and runtime calling sequence diagram for
legacy system of Java without any support of source
codes. Through Java Reflection, we can easily get some
basic information of classes, including class name,
member variables, member functions/methods with
parameter signature, super class/interface name. This
information can be used to rebuild the class diagram,
but it is not enough to get out the method calling
sequence diagram, because Java Reflection cannot find
out the detailed information hided in the internal body
of method. Through decompiler tools, we can get the
readable bytecode instructions.From the readable
bytecode, one can find the four bytecode instructions:
invokevirtual, invokespecial, invokestatic and
invokeinterface. With the help these four bytecode we
can analyze the system easily. The above techniques are
grouped together and the approach is listed as follows.

97

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

A . Java Reflection:

By using Java Reflection, one can load the binary
bytecode and reflect the peripheral information of Java
class, including interface, super class, class modifiers,
constructors, methods, method signatures.

B . Java Decompiler:

Using Java decompiler tools to resolve the binary
bytecode, the preliminary calling sequence diagram can
be derived, whose most methods are affiliated to
interface or abstract classes, not concrete classes.

C . Joinpoint:

If a method of derived class overwrites the same
method of super class, set a joinpoint on any call to the
method overwritten. Then the joinpoint can be
encapsulated as a pointcut.

D . Pointcut:

For each pointcut, setup a new “before” advice to
trace the real runtime information of Java objects. The
code of joinpoint, pointcut and advice can be written
into a single aspect file.

E . Aspect Weaver:

Weave the aspect file into the binary class
bytecode during legacy system runtime and trace the
real calling sequence.

Finally analyze to the trace log, adapt the
preliminary result of Java Decompiler and generate the
calling sequence diagram automatically. Through
bytecode analysis, one can get the class diagram and
sequence diagram of the source code.

 The system architecture for our proposed system is
given below which shows how we are able to generate
class diagrams and sequence diagrams from the binary
byte code.

Bina ry Bytecode

Ja va Legacy System

Java Ref lection

Java Decom piler

Sta tic Inform a tion Dyna m ic Inform a tion

Aspectj

Cla ss Dia gra m Sequence Dia gra m

Ja va Decompiler

Figure 1. System Architecture

This will ensure the software maintenance in a
better manner. If we arrived at class diagrams and
sequence diagrams then with that help we can go for
design, analysis, source code, implementation and
finally maintenance.

V. CONCLUSION

Obtaining valuable information from the legacy
system by refactoring it and without any source code
support seems very difficult in reverse engineering. In
this paper, based on the techniques of bytecode analysis
and aspect-oriented programming, the class diagram
and sequence diagram are automatically generated from
Java legacy system. And with the help of those
diagrams, the source code of a java legacy system is
generated. This approach is useful in software
maintenance, system reengineering and refactoring.

REFERENCES
[1] Liangyu Chen, Jianlin Wang, Ming Xu, Zhenbing Zeng,

“Reengineering of java legacy based on aspect – oriented
programming”, in Second International Workshop on Education
Technology and Computer Science, 2010.Bessel functions,Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[2] S.Ducasse, T.Girba, R.Wuyts, “Object-oriented legacy system
trace based logic testing”, in Proceedings of the Conference on
Software Maintenance and Reengineering (CSMR2006), 2006.

[3] A.Cain, J. Schneider, D.Grant and T.Chen, “Runtime Data
Analysis for Java Programs”, Proceedings of 1st workshop on
advancing the state of-the-art in runtime-inspection
(ECOOP2003), July, 2003.

[4] Eclipse Project, http://www.eclipse.org/.

[5] NetBeans Project, http://www.netbeans.org/.

[6] B.Adams, K.Schutter, A.Zaidman, S.Demeyer, H.Tromp and
W.Meuter, “Using aspect orientation in legacy environments for
reverse engineering using dynamic analysis”—An industrial
experience report, The Journal of Systems and Software”,
82:668-684, 2009.

[7] K.Schutter, B.Adams, “Aspect-orientation for revitalising
legacy business software”. Electronic Notes in Theoretical
Computer Science 166 (1),63-80,2007.

[8] T. Systa, “Static and dynamic reverse engineering techniques
for Java software systems”, Ph.D. Thesis, University of
Tampere, Finland, 2000.

98

	I. INTRODUCTION
	II. ASPECT-ORIENTED PROGRAMMING
	III. RELATED WORK
	IV. PROPOSED SYSTEM
	A . Java Reflection:
	B . Java Decompiler:
	C . Joinpoint:
	D . Pointcut:
	E . Aspect Weaver:
	V. CONCLUSION
	REFERENCES

