
Forensic analysis of tampering database using RGBY algorithm

Rajni kori1, Vinod Kumar Sripuram2, Saurabh Suman3 and Dr.B.B.Meshram
V.J.T.I/Computer, Mumbai, India
1Email: kori07rajni@yahoo.co.in

2 Email: vinodkumargate@gmail.com
 3Email: saurabh.mvjti@gmail.com

Abstract - We are using cryptographically-strong
hash functions to detect tampering of a database to
identify the people who have made any changes to
the database silently we are applying forensic
analysis algorithm and to determining who, when,
and what, by providing a systematic means of
performing forensic analysis after such tampering
has been uncovered. We will use more sophisticated
forensic analysis algorithms: RGBY to perform
forensic analysis on tampered data .

Index Terms - Forensic analysis algorithm , RGBY
algorithm

1. INTRODUCTION
Due to recent federal laws e.g., Health Insurance

Portability and Accountability Act: HIPAA, Canada’s
PIPEDA, Sarbanes-Oxley Act and standards e.g.,
Orange Book for security, and in part due to widespread
news coverage of collusion between auditors and the
companies they audit (e.g., Enron, WorldCom), which
helped accelerate passage of the aforementioned laws,
there has been interest within the file systems and
database communities about built-in mechanisms to
detect or even prevent tampering.

Audit log security is one component of more
general record management systems that track
documents and their versions, and ensure that a
previous version of a document cannot be altered. As an
example, digital notarization services when provided
with a digital document, generate a notary ID through
secure one-way hashing, thereby locking the contents
and time of the notarized documents . Later, when
presented with a document and the notary ID, the
notarization service can ascertain whether that specific
document was notarized, and if so, when Compliant
records are those required by myriad laws and
regulations (10,000 in the US) to follow certain
“processes by which they are created, stored, accessed,
maintained, and retained” . It is common to use Write-
Once-Read-Many (WORM) storage devices to preserve
such records .The original record is stored on a write-
once optical disk. As the record is modified, all
subsequent versions are also captured and stored, with
metadata recording the timestamp, optical disk,

filename, and other information on the record and its
versions.

Such approaches cannot be applied directly to
high-performance databases. A copy of the database
cannot be versioned and notarized after each
transaction. Instead, audit log capabilities must be
moved into the DBMS.

An cryptographically strong one-way hash
functions prevent an intruder, including an auditor or an
employee or even an unknown bug within the DBMS
itself, from silently corrupting the audit log . This is
accomplished by hashing data manipulated by
transactions and periodically validating the audit log
database to detect when it has been altered. The
question then arises, what do you do when an intrusion
has been detected? At that point, all you know is that at
some time in the past, data somewhere in the database
has been altered. Forensic analysis is needed to
ascertain when the intrusion occurred, what data was
altered, and ultimately, who is the intruder.

2. TAMPER DETECTION
In this section we study the tamper detection

approach.

There are several related ideas that in concert allow
tamper detection.

1) The first insight is that the DBMS can maintain the
audit log in the background, by rendering a
specified relation as a transaction-time table. This
instructs the DBMS to retain previous tuples during
update and deletion, along with their insertion and
deletion/update time (the start and stop
timestamps), in a manner completely transparent to
the user application. An important property of all
data stored in the database is that it is append-only:
modifications only add information; no information is
ever deleted. Hence, if old information is changed
in any way, then tampering has occurred. Oracle
10g supports transaction-time tables.

2) The second insight is that the data modified
(inserted/ updated/deleted) by a transaction can be
cryptographically hashed to generate a secure one-
way hash of the transaction.

©gopalax -International Journal of Technology And Engineering System(IJTES):
 Jan –March 2011- Vol.2.No.2.

gopalax Publications 148

3) The third insight is to digitally notarize this hash
value with an external notarization service. So even
if the intruder has full access to the database itself,
the DBMS, and even the operating system and
hardware, the intruder cannot change the hash
value. This makes it exceedingly difficult to make
a series of changes to the audit log that generate the
same hash value.

4) Finally validation service rehash the tuple and
match with the previously computed hash .if
matching is there then no problem , but if not
match then we need to apply forensic analysis
RGBY algorithm to find out where and when that
tampering has occurred

Fig (a) forensic analysis of tampered data

3. NOTATION USED IN ALGORITHM

Sysmbol Name Definition
CE Corruption

event
An event that compro-
mises the database

VE Validation
event

The validation of the Audit
log by the notarize-tion
service

NE Notarizati
on event

The notarization of a
document by the
notarization service

lc Corruption
locus data

The corrupted data

tn Notarizati
on time

The time instant of a NE

tc Corruption
time

The time instant of a CE

tRVS Time of
most
recent
validation
success

The time instant of the last
NE whose revalidation
yielded a true result

tFVF Time of
first
validation
failure

Time instant at which the
CE is first detected

USB Upper
spatial
bound

Upper bound of the spatial
uncertainty of the
corruption region

LSB Lower
spatial
bound

Lower bound of the spatial
uncertainty of the
corruption region

UTB Upper
temporal
bound

Upper bound of the
temporal uncertainty of the
corruption region

LTB Lower
temporal
bound

Lower bound of the
temporal uncertainty of the
corruption region

V Validation
factor

The ratio Iv/IN

N Notarizati
on factor

The ratio IN/Rs

tv Validation
time

The time instant of VE

tl Locus
time

The time instant that lc was
stored

Iv Validation
interval

The time between two
successive VE’s

IN Notarizati
on interval

The time between two
successive NE’s

Rt Temporal
detection
resolution

Finest granularity chosen to
express temporal bound
uncertaintiy of CE

Rs Spatial
detection
resolution

Finest granularity chosen to
express temporal bound
uncertaintiy of CE

4. FORENSIC ANALYSIS
Once the corruption has been detected, a forensic

analyzer springs into action. The task of this analyzer is
to ascertain, as accurately as possible, the corruption
region: the bounds on “where” and “when” of the
corruption.

From this validation event, we have exactly one bit
of information: validation failure. For us to learn
anything more, we have to go to other sources of

Forensic
analysis
module

149 gopalax Publications

information. One such source is a backup copy of the
database.

We could compare, tuple-by-tuple, the backup with
the current database to determine quite precisely where
(the locus) of the CE. That would also delimit the
corruption time, to after the locus time (one cannot
corrupt data that has not yet been stored!). Then, from
knowing where and very roughly when, the CIO and
CSO and their staffs can examine the actual data
(before and after values) to determine who might have
made that change.

However, it turns out that the forensic analyzer can
use just the database itself to determine bounds on the
corruption time and the locus time.

• RGBY has a more regular structure and avoids
some of RGB’s ambiguities.

• The RGBY chains are of the same types as in
the original RGB Algorithm.

• The black cumulative chains are used in
conjunction with new partial hash chains,
Another difference is that these partial chains
are evaluated and notarized during a validation
scan of the entire database.

• The introduction of the partial hash chains will
help us deal with more complex scenarios,
e.g., multiple data-only CEs or CEs involving
timestamp corruption. The partial hash chains
in RGB are computed as follows.

• We assume throughout that the validation
factor V = 2 and IN is a power of two.
for odd i the Red chain covers NE 2・i−3
through NE 2・i−1
for even i the Green chain covers NE 2・i−3
through NE 2・i−1
for even i the Blue chain covers NE 2・i−2
through NE 2・I

• In this algorithm (RGBY) we simply introduce
a new Yellow chain, computed as follows:

— for odd i the Yellow chain covers NE 2・i−2 through
NE 2・i.

• It is indexed as Chain[color, number], where
number refers to the subscript of the chain
while color is an integer between 0 and 3 with
the following meaning.

—if color = 0 then Chain refers to a Blue chain
—if color = 1 then Chain refers to a Green chain
—if color = 2 then Chain refers to a Red chain
—if color = 3 then Chain refers to a Yellow chain

RGBY forensic analysis algorithm
// input : tRVs is the time of first validation failure
// IN is the notarization interval

//Output : Cset is the set of corrupted granules
// UTB , LTB are the temporal bounds on tc
Procedure RGBY(tFVF , IN)
1.Iv ← 2.IN // v=2
2.Cset ← Ф
3.tRVS ← find_ tRVS(tFVF , IN)
4.USB ←tRVS+IN
5.LSB ←tRVS
6.UTB ←tFVF
7.LTB ← max(tFVF-IV , tRVS)
8.Cset ←Cset U{tRVS+1}
9. v←(tFVF/IV)
10.lastchain ← chain[1+v mod 2 ,v]
11.n ←(LSB/IN)
12.S ← [(n/2.0)]+1
13. currChain ← Chain[(n+3)mod 4 ,s]
14. While currChain ≤ lastchain do
15.If (currChain.color =Green) U
(currChain.color=Yellow) then
16.succChain.number ← currChain.number+1
17. Else succChain.number ←currChain.number
18.succChain.color ← (currchain.color+1)mod 4
19.If ⌐ val_check(currchain) then
20. If ⌐ val_check(succChain)then
21.If currchain.color=Blue U currchain.color=Red then
22.Cset ← Cset U {2.(currChain.number-1) .IN +1}
23.Else Cset ← Cset U {2.(currChain.number. IN - IN +1}
24. currChain ← succchain
25 . Return Cset , LTB< tc≤ UTB
// input : tFVF is the time of first validation failure
// IN is the notarization interval
// output : schema Corruption if it exists
// tRVS is the time of most recent validation success

Procedure find_tRVS(tFVF ,IN)
1. Left← 1
2. Right←tFVF
3. tRVS← (left +right)/2
// since tRVS may not coincide with a NE
4. If (tRVS mod IN)≠0 then tRVS ←tRVS - (tRVS mod IN)
5.While (⌐ Blackchain[max(1+(tRVs / IN),0)] U
BlackChain[tRVS/IN])
∩(right≥left) do
6.If ⌐ BlackChain[tRVS/IN]then
7. If tRVS=0 then
8. Report “schema corruption : cannot proceed…”
9. Exit
10.If tRVS-IN< 0 then right←0 else right← tRVS-IN

gopalax Publications 150

11.Else
12. If tRVS+IN >tFVF then left ← tFVF else left ← tRVS+IN
13.tRVS ← (left+right)/2
14.If (tRVS mod IN) 0 then tRVS←tRVS – (tRVS mod IN)
15. Return tRVS

• The RGBY Algorithm was designed so that it
attempts to find more than one CE.

• However, the main disadvantage of the
algorithm is that it cannot distinguish between
three contiguous corruptions and two
corruptions with an intervening IN between them.

5. NOTARIZATION AND VALIDATION
INTERVALS

We assumed a notarization interval of IN = 2 and
validation interval of IV = 6. In this case, notarization
occurs more frequently than validation and the two
processes are in phase, with IV a multiple of IN . In such
a scenario, we saw that the spatial uncertainty is
determined by the notarization interval and the
temporal uncertainty by the validation interval.

The validation interval should be equal to or longer
than the notarization interval, should be a multiple of
the notarization interval, and should be aligned, that is,
periodically be simultaneous with notarization. When
the two do align, validation should occur immediately
after notarization. Thus the validation factor Vsuch that
IV = V · IN.

6. CONCLUSION
In this paper we have discussed how to find out the

tampering in database . we are using the cryptographic
application apply the hash function to generate the
hash value. Database management system and
validation system both are using same one-way hash
function to calculate the hash value. Notarization
service which is a third party that generate the notarized
id to the document that is being sent by database
management system .after finding tampering we will
apply the RGBY algorithm for tampering analysis.
RGBY algorithm is more powerful then other because it
found out multiple corruption region.

6. REFERENCES
[1] I. Ahn and R. T. Snodgrass, “Partitioned Storage

Structures for Temporal Databases,” Information
Systems, Vol. 13, No. 4, December 1988, pp. 369–391.

[2] J. Bair, M. B¨ohlen, C. S. Jensen, and R. T. Snodgrass,
“Notions of Upward Compatibility of Temporal Query

Languages,” Business Informatics (Wirtschafts
Informatik) 39(1):25–34, February, 1997.

[3] K. Fu, M. F. Kaashoek and D. Mazi`eres, “Fast and
secure distributed read-only file system,” in Proceedings
of the USENIX Symposium on Operating Systems Design
and Implementation, pp. 181–196, October 2000.

[4] P. A. Gerr, B. Babineau, and P. C. Gordon,
“Compliance: the effect on information management and
the storage industry,” Enterprise Storage Group
Technical Report, May 2003.

[5] S. Haber and W. S. Stornetta, “How To Time-Stamp a
Digital Document,” Journal of Cryptology 3:99–111, 1999.

[6] W. W. Hsu and S. Ong, “Fossilization: A process for
establishing truly trustworthy records,” IBM Research
report RJ 10331, 2004.

[7] C. S. Jensen and C. E. Dyreson (eds), “A Consensus
Glossary of Temporal Database Concepts—February
1998 Version,” in Temporal Databases: Research and
Practice, O. Etzion, S. Jajodia, and S. Sripada (eds.),
Springer-Verlag, pp. 367–405, 1998.

[8] C. S. Jensen and R. T. Snodgrass, “Temporal
Specialization and Generalization,” IEEETransactions
on Knowledge and Data Engineering, Vol. 6, No. 6,
December 1994, pp. 954–974.

[9] LabCompliance,www.labcompliance.com/-e-
signatures/overview.htm, viewed November 14,2005.

[10] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R.
Wang, and Y. Zhu, “Immortal DB: transaction time
support for SQL server,” in Proceedings of the
International ACM Conference on Management of Data
(SIGMOD), pp. 939–941, June 2005.

[11] D. Mazi`eres, M. Kaminsky, M. F. Kaashoek and E.
Witchel, “Separating key management from file system
security,” in Proceedings of the ACM Symposium on
Operating Systems Principles, pp. 124–139, December 1999.

 [12] Oracle Corporation, “Oracle Database 10g Workspace
Manager Overview,” Oracle White Paper, May 2005.

[13] B. Schneier and J. Kelsey, “Secure Audit Logs to Support
Computer Forensics,” ACM Transactions on Information
and System Security 2(2):159–196, May 1999.

[14] R. T. Snodgrass, S. S. Yao, and C. Collberg, “Tamper
Detection in Audit Logs,” in Proceedings of the
International Conference on Very Large Databases, pp.
504–515, Toronto, Canada, September 2004.

[15] Q. Zhu and W. W. Hsu, “Fossilized Index: The Linchpin
of Trustworthy Non-Alterable Electronic Records,” in
Proceedings of the ACM International Conference on
Management of Data, pp. 395–406, Baltimore,
Maryland, June 2005.

151 gopalax Publications

