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Abstract— Error correcting coding (ECC) is a 
critical part of modern communication systems, 
where it is used to detect and correct errors 
introduced during a transmission over a channel. It 
relies on transmitting the data in encoded form, 
such that the redundancy introduced by the coding 
allows a decoding device at the receiver to detect 
and correct errors.  In information theory, turbo 
codes are a class of high-performance forward error 
correction (FEC) codes developed in 1993, which 
were the first practical codes to closely approach the 
channel capacity, a theoretical maximum for the 
channel noise at which reliable communication is 
still possible. Turbo codes are finding use in (deep 
space) satellite communications and other 
applications where designers seek to achieve reliable 
information transfer over bandwidth or latency 
constrained communication links. Turbo codes are 
nowadays competing with LDPC codes, which 
provide similar performance. It is theoretically 
possible to approach the Shannon limit by using a 
block code with large block length or a 
convolutional code with a large constraint length. 
The processing power required to decode such long 
codes makes this approach impractical. Turbo codes 
overcome this limitation by using recursive coders 
and iterative soft decoders.The recursive coder 
makes convolutional codes with short constraint 
length appear to be block codes with a large block 
length, and the iterative soft decoder progressively 
improves the estimate of the received message.  The 
turbo encoder and decoder is based on convolution 
constituent codes which will outperform all other 
Forward Error Correction techniques. The turbo 
decoder can be modified easily to fit any size for 
advanced communication system-on-chip product. 
Therefore it has been adopted by important 
broadband communication applications and 
standards such as DVB-RSC (Digital Video 
Broadcast Return Channel Satellite) and the 3G 
wireless communication.  
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I. INTRODUCTION 
Coding theorists have traditionally attacked the 

problem of designing good codes by developing codes 
with a lot of structure, which lends itself to feasible 

decoders, although coding theory suggests that codes 
chosen at random should perform well if their block 
sizes are large enough. The challenge to find practical 
decoders for almost random, large codes has not been 
seriously considered until recently. Perhaps the most 
exciting and potentially important development in 
coding theory in recent years has been the dramatic 
announcement of turbo codes by Berrou et al. in 1993. 
The announced performance of these codes was so 
good that the initial reaction of the coding 
establishment was deep skepticism, but recently 
researchers around the world have been able to 
reproduce those results. The introduction of turbo codes 
has opened a whole new way of looking at the problem 
of constructing good codes and decoding them with low 
complexity . Turbo codes achieved near-Shannon-limit 
error correction performance with relatively simple 
component codes and large interleavers. A required 
Eb=N0 of 0.7 dB was reported for a bit-error rate 
(BER) of 10.5 for a rate 1/2 turbo code . Multiple turbo 
codes (parallel concatenation of q > 2 convolutional 
codes) and a suitable decoder structure derived from an 
approximation to the maximum a posteriori (MAP). 

II.   PARALLEL CONCATINATION OF 
CONVOLUTION CODES 

The codes considered in this article consist of the 
parallel concatenation of multiple (q ¸ 2) convolutional 
codes with random interleavers (permutations) at the 
input of each encoder. This extends the original results 
on turbo codes reported  which considered turbo codes 
formed from just two constituent codes and an overall 
rate of 1/2. Figure 1 provides an example of parallel 
concatenation of three convolutional codes. The 
encoder contains three recursive binary convolutional 
encoders with m1, m2, and m3 memory cells, 
respectively. In general, the three component encoders 
may be di®erent and may even have di®erent rates. 
The  first component encoder operates directly  on the 
information bit sequence u of length N, producing the 
two output sequences x0 and x1. The second 
component encoder operates on a reordered sequence of 
information bits, u2, produced by a permuter 
(interleaver), ¼2, of length N, and outputs the sequence 
x2. Similarly, subsequent component encoders operate 
on a reordered sequence of information bits. The 
interleaver is a  pseudorandom block scrambler defined 
by a permutation of N elements without repetitions: A 
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complete block was read into the the interleaver and 
read out in a specified (fixed) random order. The same 
interleaver was used repeatedly for all subsequent 
blocks. Figure 1 shows an example where a rate r = 
1=n = 1=4 code is generated by three component codes 
with memory m1 = m2 = m3 = m = 2, producing the 
outputs x0 , x1, g1,g0, x2, x3 , where the generator 
polynomials g0 and g1 have octal representation . Note 
that various code rates can be obtained by proper 
puncturing of x1, x2, x3, and even x0. We used the 
encoder in Fig. 1 to generate an (n(N + m);N) block 
code, where the m tail bits of code 2 and code 3 are not 
transmitted. Since the component encoders are 
recursive, it is not sufficient to set the last m 
information bits to zero in order to drive the encoder to 
the all-zero state, i.e., to terminate the trellis. The 
termination (tail) sequence depends on the state of each 
component encoder after N bits, which makes it 
impossible to terminate all component encoders with m 
predetermined tail bits. This issue, which had not been 
resolved in the original turbo code implementation, can 
be dealt with by applying a simple method described  
that is valid  for any number of component codes. A 
design for constituent convolutional codes, which are 
not necessarily optimum convolutional codes, was 
originally reported in  for rate 1=n codes.  

 
Figure 1: Example of encoder with three codes. 

II. DESIGN OF CONSTITUENT ENCODERS 
Maximizing the weight of output codewords 

corresponding to weight-2 data sequences gives the best 
BER performance for a moderate bit signal-to-noise 
ratio (SNR) as the random interleaver size N gets large. 
In this region, the dominant term in the expression for 
bit error probability of a turbo code with q constituent 
encoders is  

                      
where dp j;2 is the minimum parity-weight (weight due 
to parity checks only) of the codewords at the output of 
the jth constituent code due to weight-2 data sequences, 
and ¯ is a constant independent of N. Define dj;2 = 
dpj;2 +2 as the minimum output weight including 
parity and information bits, if the jth constituent code 
transmits the information (systematic) bits. Usually one 
constituent code transmits the information bits (j = 1), 
and the information bits of others are punctured. Define 
def = ∑q j=1 dp j;2 +2 as the effective free distance of 
the turbo code and 1=Nq¡1 as the interleaver's gain. We 
have the following bound on dp 2 for any constituent 
code. 

III.   INTERLEVER DESIGN 
The random interleaver uses a fixed random 

permutation and maps the input sequence according to 
the permutation order. The length of the input sequence 
is assumed to be L. Figure 2 shows a random 
interleaver with L=8. 

 
Write In 
 
 
 
Fixed  
Random 
Permutation 
 
Read Out 
 

Figure 2: A Pseudo random Interlever with N=8 

From Figure 2, the interleaver writes in [0 1 1 0 1 0 
0 1] and reads out [0 1 0 1 1 0 0 1]. 

IV    VITERBI DECODER 
This Viterbi decoding algorithm was for a simple 

Binary Convolutional Code with rate 1/2, constraint 
length  K=3. For optimal decoding for a modulation 
scheme with memory (as is the case here), if there are N 
coded bits, we need to search from 2^N possible 
combinations. This became prohibitively complex as N 
becomes large. 

(1) Though we reached each state from 2 possible 
states, only one of the transition in valid.  

(2) We  found the transition which is more likely 
(based on the received coded bits) and ignore the 
other transition. 

1 1 0 1 0 0 1 0 

1 6 8 2 7 4 5 3 

0 1 0 1 1 0 0 1 
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(3) The errors in the received coded sequence are 
randomly distributed and the probability of error is 
small. 

Based on the above assumptions, the decoding 
scheme proceed as follows: Assume that there are N 
coded bits. Take two coded bits at a time for processing 
and compute Hamming distance, Branch Metric, Path 
Metric and Survivor Path index for  (N/2)+K-1 times. 
Let be the index varying from 1 till (N/2)+K-1. 

 
Figure 3: Branch Metric and Path Metric 

computation for Viterbi decoder 

A. Traceback Unit 
 Once the survivor path is computed (N/2)+K-1 

times, the decoding algorithm can start trying to 
estimate the input sequence. Thanks to presence of tail 
bits (additional K-1 zeros) , it is known that the final 
state following convolution codes  is State 00. 

 i/p if  previous state 
current 
state 00 01 10 11 

00 0 0 x x 
01 x x 0 0 
10 1 1 x x 
11 x x 1 1 

Table 1: Input given current state and previous state 

 

 

V. OBSERVATIONS 

 
Figure 4: BER plot for BPSK modulation in AWGN             
channel with Binary Convolutional code and hard 

decision Viterbi decoding 

(1) I obtained the results shown in this chart using the 
example simulation code, with the trellis depth set 
to Kx 5, using the adaptive quantizer with three-bit 
channel symbol quantization. For each data point, I 
ran the simulation until 100 errors (or possibly 
more) occurred. With this number of errors, I have 
95% confidence that the true number of errors for 
the number of data bits through the simulation lies 
between 80 and 120. 

(2) Notice how the simulation results for BER on an 
uncoded channel closely track the theoretical BER 
for an uncoded channel, which is given by the 
equation P(e) = 0.5 *  rfc(sqrt(Eb/N0)) = 
Q(sqrt(2Eb /N0). This validates the uncoded BER 
algorithm and the Gaussian noise generator. The 
coded BER results appear to agree well with those 
obtained by others. 

(3) Error events occur as a Poisson process, a random 
sequence of events in time. The Poisson process 
has a mean rate _ equal to n/t, where n is the 
number of events (the number of errors, in this 
case) and t is the time interval of the measurement. 
For the purposes of the simulation, let's let t = the 
total number of bits in the simulation. Let's say we 
measure 100 errors in 100,000 bits. The rate is thus 
100/100,000, or 1 x 10-3. If we set up the 
simulation to run for 100,000 bits, then the mean µ 
of the Poisson distribution is t, or 100 errors. The 
formula for the probability of an expected number r 
of errors, given a mean of µ errors, is µ  So the 
Poisson distribution for 50 to 150 errors,given a 
mean of 100 errors, is illustrated in the chart 
below: 
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.The cumulative probability of the above 

distribution for the range of 80 to 120 errors is 
actually 95.99%(approximately). 
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