
Implementation of encoder and decoder for Turbo codes
1Rutuja D. Deshmukh and 2Prof. D.M.Meshram

Department of Electronics, Priyadarshini college of engineering, Nagpur, India.
1rutuja1502@yahoo.com., 2divyameshram@gmail.com

Abstract— Error correcting coding (ECC) is a
critical part of modern communication systems,
where it is used to detect and correct errors
introduced during a transmission over a channel. It
relies on transmitting the data in encoded form,
such that the redundancy introduced by the coding
allows a decoding device at the receiver to detect
and correct errors. In information theory, turbo
codes are a class of high-performance forward error
correction (FEC) codes developed in 1993, which
were the first practical codes to closely approach the
channel capacity, a theoretical maximum for the
channel noise at which reliable communication is
still possible. Turbo codes are finding use in (deep
space) satellite communications and other
applications where designers seek to achieve reliable
information transfer over bandwidth or latency
constrained communication links. Turbo codes are
nowadays competing with LDPC codes, which
provide similar performance. It is theoretically
possible to approach the Shannon limit by using a
block code with large block length or a
convolutional code with a large constraint length.
The processing power required to decode such long
codes makes this approach impractical. Turbo codes
overcome this limitation by using recursive coders
and iterative soft decoders.The recursive coder
makes convolutional codes with short constraint
length appear to be block codes with a large block
length, and the iterative soft decoder progressively
improves the estimate of the received message. The
turbo encoder and decoder is based on convolution
constituent codes which will outperform all other
Forward Error Correction techniques. The turbo
decoder can be modified easily to fit any size for
advanced communication system-on-chip product.
Therefore it has been adopted by important
broadband communication applications and
standards such as DVB-RSC (Digital Video
Broadcast Return Channel Satellite) and the 3G
wireless communication.

Keywords-Turbo Codes, Error Correcting Code,
Encoder, Decoder

I. INTRODUCTION
Coding theorists have traditionally attacked the

problem of designing good codes by developing codes
with a lot of structure, which lends itself to feasible

decoders, although coding theory suggests that codes
chosen at random should perform well if their block
sizes are large enough. The challenge to find practical
decoders for almost random, large codes has not been
seriously considered until recently. Perhaps the most
exciting and potentially important development in
coding theory in recent years has been the dramatic
announcement of turbo codes by Berrou et al. in 1993.
The announced performance of these codes was so
good that the initial reaction of the coding
establishment was deep skepticism, but recently
researchers around the world have been able to
reproduce those results. The introduction of turbo codes
has opened a whole new way of looking at the problem
of constructing good codes and decoding them with low
complexity . Turbo codes achieved near-Shannon-limit
error correction performance with relatively simple
component codes and large interleavers. A required
Eb=N0 of 0.7 dB was reported for a bit-error rate
(BER) of 10.5 for a rate 1/2 turbo code . Multiple turbo
codes (parallel concatenation of q > 2 convolutional
codes) and a suitable decoder structure derived from an
approximation to the maximum a posteriori (MAP).

II. PARALLEL CONCATINATION OF
CONVOLUTION CODES

The codes considered in this article consist of the
parallel concatenation of multiple (q ¸ 2) convolutional
codes with random interleavers (permutations) at the
input of each encoder. This extends the original results
on turbo codes reported which considered turbo codes
formed from just two constituent codes and an overall
rate of 1/2. Figure 1 provides an example of parallel
concatenation of three convolutional codes. The
encoder contains three recursive binary convolutional
encoders with m1, m2, and m3 memory cells,
respectively. In general, the three component encoders
may be di®erent and may even have di®erent rates.
The first component encoder operates directly on the
information bit sequence u of length N, producing the
two output sequences x0 and x1. The second
component encoder operates on a reordered sequence of
information bits, u2, produced by a permuter
(interleaver), ¼2, of length N, and outputs the sequence
x2. Similarly, subsequent component encoders operate
on a reordered sequence of information bits. The
interleaver is a pseudorandom block scrambler defined
by a permutation of N elements without repetitions: A

©gopalax -International Journal of Technology And Engineering System(IJTES):
 Jan –March 2011- Vol.2.No.2.

)

163 gopalax Publications

complete block was read into the the interleaver and
read out in a specified (fixed) random order. The same
interleaver was used repeatedly for all subsequent
blocks. Figure 1 shows an example where a rate r =
1=n = 1=4 code is generated by three component codes
with memory m1 = m2 = m3 = m = 2, producing the
outputs x0 , x1, g1,g0, x2, x3 , where the generator
polynomials g0 and g1 have octal representation . Note
that various code rates can be obtained by proper
puncturing of x1, x2, x3, and even x0. We used the
encoder in Fig. 1 to generate an (n(N + m);N) block
code, where the m tail bits of code 2 and code 3 are not
transmitted. Since the component encoders are
recursive, it is not sufficient to set the last m
information bits to zero in order to drive the encoder to
the all-zero state, i.e., to terminate the trellis. The
termination (tail) sequence depends on the state of each
component encoder after N bits, which makes it
impossible to terminate all component encoders with m
predetermined tail bits. This issue, which had not been
resolved in the original turbo code implementation, can
be dealt with by applying a simple method described
that is valid for any number of component codes. A
design for constituent convolutional codes, which are
not necessarily optimum convolutional codes, was
originally reported in for rate 1=n codes.

Figure 1: Example of encoder with three codes.

II. DESIGN OF CONSTITUENT ENCODERS
Maximizing the weight of output codewords

corresponding to weight-2 data sequences gives the best
BER performance for a moderate bit signal-to-noise
ratio (SNR) as the random interleaver size N gets large.
In this region, the dominant term in the expression for
bit error probability of a turbo code with q constituent
encoders is

where dp j;2 is the minimum parity-weight (weight due
to parity checks only) of the codewords at the output of
the jth constituent code due to weight-2 data sequences,
and ¯ is a constant independent of N. Define dj;2 =
dpj;2 +2 as the minimum output weight including
parity and information bits, if the jth constituent code
transmits the information (systematic) bits. Usually one
constituent code transmits the information bits (j = 1),
and the information bits of others are punctured. Define
def = ∑q j=1 dp j;2 +2 as the effective free distance of
the turbo code and 1=Nq¡1 as the interleaver's gain. We
have the following bound on dp 2 for any constituent
code.

III. INTERLEVER DESIGN
The random interleaver uses a fixed random

permutation and maps the input sequence according to
the permutation order. The length of the input sequence
is assumed to be L. Figure 2 shows a random
interleaver with L=8.

Write In

Fixed
Random
Permutation

Read Out

Figure 2: A Pseudo random Interlever with N=8

From Figure 2, the interleaver writes in [0 1 1 0 1 0
0 1] and reads out [0 1 0 1 1 0 0 1].

IV VITERBI DECODER
This Viterbi decoding algorithm was for a simple

Binary Convolutional Code with rate 1/2, constraint
length K=3. For optimal decoding for a modulation
scheme with memory (as is the case here), if there are N
coded bits, we need to search from 2^N possible
combinations. This became prohibitively complex as N
becomes large.

(1) Though we reached each state from 2 possible
states, only one of the transition in valid.

(2) We found the transition which is more likely
(based on the received coded bits) and ignore the
other transition.

1 1 0 1 0 0 1 0

1 6 8 2 7 4 5 3

0 1 0 1 1 0 0 1

gopalax Publications 164

(3) The errors in the received coded sequence are
randomly distributed and the probability of error is
small.

Based on the above assumptions, the decoding
scheme proceed as follows: Assume that there are N
coded bits. Take two coded bits at a time for processing
and compute Hamming distance, Branch Metric, Path
Metric and Survivor Path index for (N/2)+K-1 times.
Let be the index varying from 1 till (N/2)+K-1.

Figure 3: Branch Metric and Path Metric

computation for Viterbi decoder

A. Traceback Unit
 Once the survivor path is computed (N/2)+K-1

times, the decoding algorithm can start trying to
estimate the input sequence. Thanks to presence of tail
bits (additional K-1 zeros) , it is known that the final
state following convolution codes is State 00.

 i/p if previous state
current
state 00 01 10 11

00 0 0 x x
01 x x 0 0
10 1 1 x x
11 x x 1 1

Table 1: Input given current state and previous state

V. OBSERVATIONS

Figure 4: BER plot for BPSK modulation in AWGN
channel with Binary Convolutional code and hard

decision Viterbi decoding

(1) I obtained the results shown in this chart using the
example simulation code, with the trellis depth set
to Kx 5, using the adaptive quantizer with three-bit
channel symbol quantization. For each data point, I
ran the simulation until 100 errors (or possibly
more) occurred. With this number of errors, I have
95% confidence that the true number of errors for
the number of data bits through the simulation lies
between 80 and 120.

(2) Notice how the simulation results for BER on an
uncoded channel closely track the theoretical BER
for an uncoded channel, which is given by the
equation P(e) = 0.5 * rfc(sqrt(Eb/N0)) =
Q(sqrt(2Eb /N0). This validates the uncoded BER
algorithm and the Gaussian noise generator. The
coded BER results appear to agree well with those
obtained by others.

(3) Error events occur as a Poisson process, a random
sequence of events in time. The Poisson process
has a mean rate _ equal to n/t, where n is the
number of events (the number of errors, in this
case) and t is the time interval of the measurement.
For the purposes of the simulation, let's let t = the
total number of bits in the simulation. Let's say we
measure 100 errors in 100,000 bits. The rate is thus
100/100,000, or 1 x 10-3. If we set up the
simulation to run for 100,000 bits, then the mean µ
of the Poisson distribution is t, or 100 errors. The
formula for the probability of an expected number r
of errors, given a mean of µ errors, is µ So the
Poisson distribution for 50 to 150 errors,given a
mean of 100 errors, is illustrated in the chart
below:

165 gopalax Publications

.The cumulative probability of the above

distribution for the range of 80 to 120 errors is
actually 95.99%(approximately).

REFERENCES
[1] Clark, G. C. Jr. and J. Bibb Cain., Error-Correction

Coding for Digital Communications, New York, Plenum
Press, 1981.

[2] Gitlin, Richard D., Jeremiah F. Hayes, and Stephen B.
Weinstein, Data Communications Principles, New York,
Plenum, 1992.

[3] Heller, J. A. and I. M. Jacobs, "Viterbi Decoding for
Satellite and Space Communication," IEEE Transactions
on Communication Technology, Vol. COM-19, October
1971, pp 835–848.

[4] Yasuda, Y., et. al., "High rate punctured convolutional
codes for soft decision Viterbi decoding," IEEE
Transactions on Communications, vol. COM-32, No. 3,
pp 315–319, Mar. 1984.

[5] Haccoun, D., and G. Begin, "High-rate punctured
convolutional codes for Viterbi and sequential
decoding," IEEE Transactions on Communications, vol.
37, No. 11, pp 1113–1125, Nov. 1989.

[6] G. Begin, et.al., "Further results on high-rate punctured
convolutional codes for Viterbi and sequential
decoding," IEEE Transactions on Communications, vol.
38, No. 11, pp 1922–1928, Nov. 1990.

gopalax Publications 166

