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Abstract— The distribution of intermeeting times 
under the generalized Hybrid Random Walk 
mobility model. We show that when  the conditional 
probability that two nodes can communicate directly 
with each other given that they are in the same cell 
is small and  node’s transitions in locations are 
independent over time, the distribution of 
intermeeting times can be well approximated using 
an exponential distribution. The mean of 
intermeeting times can be estimated using the 
number of cells in the network and the 
aforementioned conditional probability of having a 
communication link when the two nodes are in the 
same cell. 

Index Terms— wireless communication, Stochastic 
processes. 

I.  INTRODUCTION 
Recently, there has been a growing interest in 

understanding the distribution of intermeeting times 
between mobile nodes in wireless networks (e.g., [1], 
[5], [10], [13]). An intermeeting time between two 
nodes refers to the amount of time during which they 
stay unable to communicate directly with each other 
after they lose the “communication link” between 
them.Since the ability of a (multihop) wireless network 
to transfer information between a pair of nodes in a 
timely manner depends critically on the (time-varying) 
network connectivity, understanding the statistical 
properties of intermeeting times is of much interest. 
Such an understanding is even more pressing in 
Disruption Tolerant Networks (DTNs) that rely on 
intermittent and/or sparse connectivity between nodes 
to forward information, in which we are primarily 
interested. 

A. Short Survey of Relevent Literature 
We summarize a few studies that are most relevant 

to this paper: Groenevelt et al. [9] studied the 
distribution of intermeeting times between two nodes 
under the popular Random Waypoint (RWP) mobility 
model and indicated that the distribution can be well 
approximated by an exponential distribution. 
Chaintreau et al. [4] examined several sets of traces 
collected in different settings and reported an 

interesting observation that the empirical distributions 
exhibit a power law decay over a wide range (from a 
few minutes to a day or more). Karagiannis et al. [12], 
using additional sets of measurements, first illustrated 
the existence of a power law decay up to a certain point, 
which they call a characteristic time, followed by an 
exponential decay, hinting at a dichotomy in the 
empirical distributions of intermeeting times. Then, 
they demonstrated that such a dichotomy exists even 
under a simple Random Walk (RW) mobility model on 
a circle. An interesting study by Cai and Eun [3] 
suggests that, in most scenarios where the domain of 
mobility is bounded, the distribution is expected to have 
an exponential tail. A similar finding by Karagiannis et 
al. [12] also proves that when nodes move according to 
mutually independent irreducible Markov chains on a 
finite-state space, the distribution of intermeeting times 
is exponentially bounded. Cai and Eun also showed that 
when the domain is unbounded, a power law can 
emerge, indicating the possibility that a bounded 
domain used for simulation may be a main source of the 
emergence of an exponential tail in some cases.have 
been submitted for publication, should be cited as 
“unpublished” [4]. Papers that have been accepted for 
publication should be cited as “in press” [5]. In a paper 
title, capitalize the first word and all other words except 
for conjunctions, prepositions less than seven letters, 
and prepositional phrases.   For papers published in 
translated journals, first give the English citation, then 
the original foreign-language citation [6]. 

B.Summary of Contributions 
In this paper, we study the distribution of 

intermeeting times under a generalized Hybrid Random 
Walk (HRW) mobility model (described in Section 3). 
It is a generalization of the HRW mobility model first 
introduced by Sharma et al. [18], which includes the 
RW mobility model [6] and the independent and 
identically distributed (i.i.d.) mobility model used in 
[15] as special cases. We prove that, under this 
generalized HRW mobility model, as the conditional 
probability that two nodes can communicate directly 
with each other, given that they are in the same cell, 
decreases to zero, (suitably scaled) intermeeting times 
converge in distribution to an exponential rv.  
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This finding implies that when 1) the intensity of 
meetings between two nodes is sufficiently small and 2) 
node’s transitions in location are independent over time, 
2 the intermeeting times between them may be well 
approximated by exponential random variables (rvs). 
Our result allows heterogeneous mobility among the 
nodes and does not require that the network size grow 
unbounded. Moreover, the specifics of transition 
probabilities assumed in the mobility model affect only 
its parameter, but not the limiting distribution. These 
findings suggest that the distribution of intermeeting 
times is not sensitive to the details of nodes’ mobility 
and may resemble an exponential distribution under a 
set of mild assumptions when the nodes’ mobility is 
independent. 

We also provide the intuition behind the finding; 
intermeeting times between two nodes in the 
generalized HRW mobility model can be represented as 
delayed geometric sums of independent rvs [11]. It is 
well known that a geometric sum of many i.i.d. rvs with 
a finite mean can be approximated using an exponential 
rv, which was first shown by Rényi [16]. Our finding 
follows from a generalization of Rényi’s result to the 
case where the first summand in the geometric sum has 
a different distribution than the others. 

Note that, although we focus on the distribution of 
intermeeting times under the generalized HRW 
mobility model, the intuition behind our result is much 
more general and may be applicable to other mobility 
models; if the intermeeting times under some other 
mobility models can be approximated as a random sum 
of independent rvs where the rvs have similar, if not 
identical, distributions and the number of summands 
tends to be large and is roughly geometrically 
distributed, the distribution may still resemble an 
exponential distribution. In this sense, we use the 
generalized HRW mobility model as a concrete 
example of a larger class of mobility models with 
certain properties, under which our result will hold. 

We emphasize that it is not our goal to disprove the 
power law decay or a dichotomy observed in empirical 
distributions of intermeeting times (e.g., [4], [12]). 
Instead, our goals are the following: First, as mentioned 
above, we illustrate that, when running simulation with 
a certain class of mobility models, including the 
generalized HRW mobility model, under which the 
intermeeting times may be approximated as delayed 
geometric sums of i.i.d. rvs,one can expect the 
distribution of intermeeting times to resemble an 
exponential distribution. Second, we provide additional 
insight into the emergence of limiting exponential 
distributions in some mobility models and how to 
estimate their parameters. We hope that these will 
enhance our growing understanding of the distribution 

of intermeeting times under different sets of 
assumptions and settings, which is currently an active 
research area. 

II.  BACKGROUND 
In this section, we describe two previously 

proposed mobility models—the RW mobility model 
and the HRW mobility model. They are special cases of 
the generalized HRW mobility model we describe in 
the following section and under which we study the 
distribution of intermeeting times. 

 
Fig. 1. The RW mobility model. 

A.  Random walk mobility model 
The RW mobility model was used by El Gamal et 

al. in [6] in the context of studying the scaling laws of 
the network transport throughput for multi-hop wireless 
networks. For each fixed n = 1, 2,….., a unit square 
area is divided into a discrete torus of size n×n. Each of 
n2 rectangular areas is called a cell, and each cell is 

identified by a pair (i, j), i, j ∈ {0, 1,…. , n−1}, as 

shown in Fig. 1. 

Time is slotted into contiguous timeslots t = 0, 
1….. At timeslot t = 0, a node is initially placed in one 
of n2 cells according to some probability mass function 
(pmf). After its initial placement, a node in a cell, say 
(i, j), first selects one of four adjacent cells, i.e., cells 
(i+1, j),(i − 1, j), (i, j + 1), and (i, j − 1),3 with equal 
probability of 1/4 independently of the past, 

and moves to the selected cell at timeslot t = 1. The 
node then repeats this process in every subsequent 
timeslot.  

The location of a node at timeslot t = 0, 1…., is 
denoted by C(n)(t), which indicates the cell where the 
node lies. From the description of the RW mobility 
model, it is clear that the discrete-time stochastic 
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process {C(n)(t); t = 0, 1,….} is a time homogeneous 

Markov chain with state space {(i, j) | i, j ∈ {0, 1,…., n 

− 1}}. 

B.  Hybrid Random walk mobility model 
The HRW mobility model can be viewed as a 

generalization of the RW mobility model in the 
previous subsection [18]. It is parameterized by β, 0 ≤ β 
≤ 1/2. For each fixed n = 1, 2,….,the unit square area is 
first divided into a discrete torus of nβ×nβ cells. Each 
cell is then further divided into n(1−2β)/2×n(1−2β)/2 subcells. 
Thus, there are a total of n subcells. A subcell ℓ(n) in 
the unit square area is uniquely identified by a pair ℓ(n) 
= (c(n), s(n)), where c(n) = (c1

 (n) , c2 
(n))with     c1

 (n) , c2 
(n) 

∈ {0, 1,…., nβ − 1} specifies the cell to which the 

subcell ℓ(n) belongs, and s(n) = (s1
(n) , s2

(n) ) with  s1
(n) , 

s2
(n) ∈ {0, 1,…. , n(1−2β)/2 −1} designates the position of 

the subcell within the cell c(n). 

The location of a node at timeslot t = 0, 1,…., is 
given by the subcell in which the node lies and is 
denoted by L(n)(t) = (C(n)(t), S(n)(t)). Here, C(n)(t) = (C1

(n) 
(t),C2

(n) (t)) and S(n)(t) = (S1
(n) (t), S2

(n) (t)) are the cell 
and the subcell within C(n)(t) where the node resides, 
respectively. The initial location L(n)(0) of the node at 
timeslot t = 0 is selected as follows: First, a cell C(n)(0) 
is chosen according to some pmf. Then, one of the 
subcells in the cell C(n)(0) is selected according to the 
discrete uniform distribution over the set of n1−2β 
subcells in the cell. 

 
Fig. 2. The generalized HRW mobility model. 

The transition of a node from one subcell at 
timeslot t = 0, 1,…., to another subcell at timeslot t+1 is 
described by the following: A node located at subcell 
ℓ(n) at timeslot t first selects one of four adjacent cells 
with equal probability of 1/4 (as in the RW mobility 
model). Then, it chooses one of the subcells in the 
selected adjacent cell with equal probability of n−(1−2β), 
independently of the past and the selected cell. Hence, 

 
L(n) := {L(n)(t); t = 0, 1,….} 

={(C(n)(t), S(n)(t)); t = 0, 1,…} , 
 

Which we call the trajectory of the node, is a 
discrete-time stochastic process where C(n) := {C(n)(t); t 
= 0, 1,…..} evolves according to the RW mobility 
model (hence is a time homogeneous Markov chain) 
and S(n) := {S(n)(t); t = 0, 1,…} is a sequence of i.i.d. 
rvs. The stochastic processes C(n) and S(n) are mutually 
independent because the subcells are selected 
independently of the past and selected cells as 
explained earlier. 

When β = 0.5, the HRW mobility model reduces to 
the usual RW mobility model since there is only one 
subcell in each cell. On the other hand, when β = 0, a 
node moves according to the i.i.d. mobility model used 
in [15]. This is because there is only one cell consisting 
of n subcells and the node selects one of the subcells 
with equal probability n−1 in each 
timeslot,independently of the past. 

III.  GENERALIZED HRW MOBILITY MODEL & 
INTERMEETING TIMES  

A.  Hybrid Random walk mobility model 
In the rest of this paper we consider a generalized 

HRW mobility model described in this subsection: For 
each fixed     n = 1, 2,….., the unit square area is 
divided into a discrete torus of h1(n) × h1(n) cells. Each 
cell is then further divided into h2(n) × h2(n) subcells. 
Both h1(n) and h2(n) are assumed to be positive 
integers. It is clear that the total number of subcells is 

(h1(n) × h2(n))2 =: N(n). Let C(n) = {(i, j) | i, j ∈ {0, 1,…. 

, h1(n) − 1}} be the set of cells and S(n) = {(a, b) | a, b 

∈ {0, 1,… , h2(n) − 1}} be the set of subcells in a cell. 

A node i moves on the discrete torus as follows: 
Let {∆Ci

(n) (t); t = 0, 1,……} be a sequence of i.i.d. rvs 
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with some pmf    Pc,i
(n) over the set {(i, j) | i, j ∈ 

{−⌊(h1(n) − 1)/2⌋,……… , ⌈(h1(n) −1)/2⌉}} =: ∆C(n). 

When node i is in cell Ci
(n) (t) at timeslot t = 0, 1,….., it 

first selects the cell Ci
(n)(t+1) =      Ci

(n) (t)+ ∆Ci
(n) (t)4 

and then picks one of the subcells, Si
(n) (t+1), in cell 

Ci
(n) (t+1) according to some pmf Ps,i

 (n) over the set S(n) 
of subcells in a cell5, independently of the past and the 
selected cell Ci

(n) (t+1). Then, node i moves to the 
chosen subcell (Ci

(n) (t+1), Si
(n)(t+1)) at timeslot t + 1.6 

This process is repeated in each of subsequent timeslots 
by node i. 

It is clear that Ci
(n) = {Ci

(n)(t); t = 0, 1,…..} is a 
time homogeneous Markov chain with the state space 
C(n), where the transition probabilities are determined 
by the pmf Pc,i

 (n). The HRWmobility model is a special 
case of this generalized HRW mobility model with the 

probability Pc,i
(n) (∆c), ∆c = (∆c1, ∆c2) ∈ ∆C(n), equal to 

1/4 if ||∆c||1 = |∆c1| + |∆c2| = 1, where ||.|| denotes the L1-
norm, and 0 otherwise. 

This mobility model allows node i to remain in the 
same subcell for more than one timeslot if Pc,i 

(n) ((0, 0)) 
= Pr[∆Ci

(n) (t) = (0, 0)] > 0. Moreover, when Pc,i
(n)(∆c)> 

0 for all ∆c ∈ ∆C(n),node i located in some cell Ci
(n)(t) at 

timeslot t can transition to any cell in C(n) at timeslot t 
+ 1. However, unlike in the i.i.d. mobility model [15], 
the probability with which a cell is selected for the 
following timeslot can depend on the current location of 
the node, retaining some memory. 

B.  Intermeeting Times Between Two Nodes 
For each n = 1, 2,…. , we have two nodes i = 0, 1, 

moving according to the generalized HRW mobility 
model on a discrete torus with N(n) subcells as 
described in the previous subsection.The pmfs Pc,i 

(n) 
and Ps,i

(n), i = 0, 1, are not necessarily identical, 
allowing heterogeneous mobility among the nodes. 

 

 
Fig. 3. Plot of indicator functions U(n)(t), t= 0. 1. 2. . . 

The location of node i at time t = 0, 1, …. , is 
identified by the subcell Li

(n)(t) = (Ci
(n)(t), Si

(n)(t)) at 
which the node is located. As explained in subsection 

2.2, Ci
(n) (t) ∈ C(n) and Si

(n) (t) ∈ S(n) denote the cell and 

the subcell within Ci
(n) (t), respectively, of node i’s 

location at timeslot t.The trajectory of node i = 0, 1, is 
given by 

Li(n) := {Li(n) (t); t = 0, 1,……} 
          = {(Ci

(n)(t), Si
(n) (t)´; t = 0, 1,…..}. 

The stochastic processes Li
(n), i = 0, 1, are assumed 

mutually independent. 

IV. DISTRIBUTIONAL CONVERGENCES OF 
INTERMEETING TIMES UNDER THE 

GENERALIZED HRW MOBILITY MODEL 
In this section we examine the distribution of the 

inter-meeting times I(n)(k), k ≥ 2, between two nodes 
under the generalized HRW mobility model. In 
particular, we are interested in their distribution when 
the two nodes meet infrequently as we focus on DTNs 
in which one-hop connectivity is often assumed sparse. 

For each n = 1, 2,….. , define γ(n) := Σs∈ S
(n) (P s,0 

(n) 

(s) × Ps,1
 (n) (s)),8 which is the probability that the two 

nodes are in contact, conditional on the event that they 
are in the same cell. In other words, 

 γ(n) = Pr [L0
(n) (t) = L1

(n) (t) | C0
(n)(t) = C1

(n)(t)] 
       = Pr [S0

(n)(t) = S1
(n)(t)], t = 0, 1,……, 

 
where the second equality follows from the assumed 
independence between Ci

(n)(t) and Si
(n)(t). 

We introduce the following are on the Markov 
chains Ci

(n) , i = 0, 1, and the conditional probabilities 
γ(n), n = 1, 2, . . . For each n = 1, 2,….., the Markov 
chains Ci

(n), i = 0, 1, are irreducible and aperiodic. (ii) 
γ(n) > 0 for all n = 1, 2,…., and limn→∞  γ(n) = 0. 
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Since the state space C(n) is finite for every n = 1, 
2,….,  Assumption 1(i) implies that the Markov chains 
Ci

(n), i = 0, 1, are also positive recurrent and, hence, 
ergodic.Therefore, it does not allow the case where the 
probability of staying in the same cell is one,i.e., 
Pc,i

(n)((0,0))< 1. Furthermore, starting from any initial 
locations Li

(n)(0), i = 0, 1, the two nodes will arrive at 
the same cell at some finite t with probability one can 
verify that the unique stationary distributions πi

(n) of the 
Markov chains Ci

(n)  under the assumed ergodicity are 
the uniform distribution over the state space C(n). This 
in turn tells us that, starting from any cell, the expected 
number of timeslots it takes to come back to the same 
starting cell, is equal to the number of cells (h1(n))2 in 
the network  

When γ(n) = 0, the two nodes never meet with 
probability one. Thus, in order to ensure that the two 
nodes will eventually meet with probability one, we 
need to assume γ(n) > 0. Moreover, in order to study the 
distribution when two nodes meet infrequently, we 
study the asymptotic distribution (under appropriate 
scaling) as the frequency or intensity of meetings 
decreases with n, i.e., γ(n) → 0. Note that Assumption 
1(ii) can be satisfied with a bounded number of subcells 
in the network, i.e., there exists finite N such that N(n) 
≤ N for all n = 1, 2,…In fact, we can have a fixed 
number of (cells and) subcells in the network 

V. INDEPENDENCE OF NODES’ MOBILITY 
Although we assumed that the trajectories of the 

two nodes L i 
(n) , i = 0, 1, are mutually independent 

throughout, we can relax this assumption as follows: 
Suppose that when two nodes meet, they coordinate 
their movements so that they can stay in contact while 
exchanging information. During this period they may 
not follow the generalized HRW mobility model. Once 
they complete the transfer of message(s), they resume 
following the generalized HRW mobility model, 
independently of each other, until they meet again, at 
which point they repeat the process. It is clear that, 
under this assumption, the distribution of the inter-
meeting times remains the same as before, whereas the 
number of consecutive timeslots they spend in contact 
after a meeting may change. 

 

 

VI. SIMULATION 
In this section we simulate the generalized HRW 

mobility model with two nodes and study the empirical 
distribution of the inter-meeting times. We demonstrate 
that, although our findingin Theorem 1 is an asymptotic 
result obtained as       γ(n) → 0, even for a non-
negligible value of the conditional probability γ(n) the 
distribution of inter-meeting times closely resembles an 

exponential distribution with a good match between the 
predicted and empirical parameters. 

 

 
 

Fig. 4. Transition between cells by a node under the 
generalized HRW mobility model. 

Two nodes move according to the generalized 
HRW mobility model on a unit square area divided into 
49 = (h1)2 cells.12 Each cell is then further divided into 9 
= (h2)2 subcells. We assume that the pmf 
Pc,i(∆c),∆c∈{(i,j)|i,j∈ {0,±1, ±2, ±3}} for selecting a 
next cell,is equal to 1/12 if 1 ≤ ||∆c||1 ≤ 2 and 0 
otherwise. In other words, a node in cell C(t) at timeslot 
t moves to one of the 12 shaded cells in Fig. 4 with 
equal probability of 1/12 at timeslot t+1. We use the 
discrete uniform distribution for subcell selection with 
Ps,i(s) = 1/9,      s∈{(a,b)|a,b∈{0,1,2}}, yielding the 
conditional probability   γ = 1/9, which is not 
negligible. 

VI. CONCLUSION 
The distribution of inter-meeting times under the 

generalized HRW mobility model. We showed that 
when the conditional probability that two nodes are in 
contact given that they are in the same cell is small, the 
inter-meeting times can be written as a delayed 
geometric sum of many independent rvs. This in turn 
implies that the distribution of inter-meeting times is 
well approximated by an exponential distribution even 
under heterogeneous mobility of the nodes. Moreover, 
the details of transition probabilities between cells and 
selection of sub cells change only the parameter of the 
limiting exponential distribution, but not the qualitative 
result (i.e., distributional convergence to an exponential 
distribution). These findings indicate that the 
distribution of inter-meeting times is insensitive to the 
details of nodes’ mobility, and an exponential 
distribution may provide a good approximation in a 
broad set of settings. While our findings are based on 
an asymptotic analysis, simulation results suggest that 
even for no negligible values of the aforementioned 
conditional probability, an exponential distribution 
offers a good approximation. Borrowing from the 
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existing literature, we also provided the intuition behind 
the emergence of a limiting exponential distribution. 
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