

 25

ENERGY REDUCTION AND DELAY MINIMIZATION IN WIRELESS
SENSOR NETWORKS THROUGH ASIPS

Manoj Kumar Jain
Mohanlal Sukhadia University, Udaipur, Rjasthan, India.

email: manoj@cse.iitd.ernet.in

ABSTRACT

Low energy consumption is a major design constraint for battery operated embedded systems such as wireless
sensor networks or WSN. Low energy is more important compared to low power for such systems as it will
increase lifetime of the system. The major component which can reduce energy is to reduce delay. WSN motes
must power sensors, a processor, and a radio for wireless communication over long periods of time, and are
therefore particularly sensitive to energy use. Recent techniques for reducing WSN energy consumption, such as
aggregation, require additional computation to reduce the cost of sending data by minimizing radio data
transmissions. Larger demands on the processor will require more computational energy, but traditional energy
reduction approaches, such as multi-core scaling with reduced frequency and voltage may prove heavy handed
and ineffective for motes. Instead, application-specific instruction set processor (ASIP) can reduce
computational energy consumption by processing operations common to specific applications more efficiently
than a general purpose processor. By the nature of their deeply embedded operation, motes support a limited set
of applications, and thus the conventional general purpose computing paradigm may not be well-suited to mote
operation. Both simple and complex operations can improve performance and use orders of magnitude less
energy with ASIPs. This paper examines the design considerations of a ASIP for compressed Bloom filters, a
data structure for efficiently storing set membership.

Index Terms—Wireless Sensor Networks, Application Specific Instruction Set Processor (ASIP), Low Energy,
Delay Minimization.

I. INTRODUCTION

Battery-powered embedded systems carefully
manage energy consumption to maximize system
lifetime. Wireless sensor networks (WSNs), made up of
many “mote” devices, are often designed to operate for
months without intervention. Sensor networks are
typically used to monitor an environment and may be
deployed in remote or hazardous locations. WSNs can
consist of thousands of motes, and cover wide areas. As
a result, mote software and hardware must consider
energy consumption at every level.

Motes are simple, pocket-sized computers. Each
mote contains a small battery that powers a radio for
wireless networking, a limited amount of memory, and
a constrained processor. Aggregation, a widely
researched field for reducing data transmissions by
combining data on motes, reduces energy use by
spending additional energy on computation to save a
greater amount of energy on the power-hungry radio
[1]. Increasing on-mote processing complexity will
require additional computational hardware, demanding
more energy. As sensor networks grow and generate
larger data sets, these energy costs will continue rising.

Unlike PCs, embedded systems often execute a
limited set of applications and have less need for
general purpose functionality. Some simple operations,
such as bit manipulations, poorly utilize a general
purpose processor. Large multiplications and other
complex operations may require several cycles on a
general purpose processor. Many embedded
applications require support for simple and complex
operations. As a result, the system must use a power-
hungry processor for simple operations or spend many
cycles using a simple processor for complex operations.

Application specific instruction set processor
(ASIP) tailors hardware to the application, efficiently
executing simple and complex operations. We refer to
these ASIP constructs as hardware accelerators. If any
of these hardware accelerators are unused, they can be
Vdd-gated so that they do not waste energy on unused
features.

This paper explores ASIP considerations during the
design of one such hardware accelerator. The
accelerator implements several operations for Bloom
filters, a data structure for efficiently storing set
membership. These operations include support for

International Journal of Power Control Signal and Computation (IJPCSC) Vol. 2 No. 1 ISSN : 0976-268X

 26

inserting items, compression and decompression, and
querying.

We propose a scheduler based ASIP design
methodology which is able to explore a large design
space. It is validated for three different popular
standard processors with significant architectural
differences. Use of ASIPs reduces execution time and
energy consumptions significantly. Results show that by
changing number of registers by just one saves
execution time by 57.5% whereas energy consumption
is reduced by 62.9%.

This paper is organized as follows. Section II
discusses related approaches to increasing energy-
efficiency and motivates the ASIP paradigm. Section III
describes the algorithms needed for the Bloom filter
hardware accelerator. The proposed scheduler based
ASIP design methodology ASSIST with its exploration
and validation results are presented in Section IV.
Section V discusses the architectural blocks needed to
implement the approach. Finally, we discuss future
work and conclude the paper.

II. RELATED WORK
A well-known paradigm for increasing energy-

efficiency in general purpose computing is to utilize
parallel processing. For example, in lieu of a single
power-hungry core, designers can distribute
computation across several low-power cores [2]. The
low-power cores operate at a lower frequency, reducing
voltage and power requirements. Several cores can be
combined in one processor to meet computational goals.
Assuming the lowest possible voltage is used, dynamic
power is roughly proportional to nf3, where n is the
number of cores and f is the operating frequency;
potential processing capacity is proportional to nf.
Ideally, power demands are minimized when many low-
frequency cores are used. However, several factors limit
the power reduction:

• Threshold voltage places a lower bound on voltage
scaling. Subthreshold operation is possible but adds
significant design challenges [3].

• Leakage current increases the power consumption of
each additional core.

• Interconnect logic for communication between cores
and shared memory requires additional power and
may introduce bottlenecks.

• Software must be parallelized to run on all cores
simultaneously

Application Specific Instruction Set Processors
(ASIP) A typical ASIP design flow includes key steps
as application analysis, design space exploration,
instruction set generation, code generation for software

and hardware synthesis [4]. Design space exploration is
driven by performance estimations. These estimates are
generated using a simulator based [5] or scheduler
based framework [6]. Simulator based technique needs
a retargetable compiler to generate code for different
processor configurations to be explored. Simulating the
generated code is slow. Further, there is a well known
trade off between retargetability and code quality in
terms of performance and code size compared to hand
optimized code. Therefore, in our opinion, simulation
based approach is not suitable for early design space
exploration.

III. BLOOM FILTER ALGORITHMS
Bloom filters provide a useful case study for an

exploration of wireless sensor device ASIP. Using
Bloom filters, many WSN applications can easily
aggregate information and reduce the size of large data
sets containing unique identifiers. These factors can
reduce costly radio transmissions and lower overall
mote energy usage. However, some Bloom filter
operations may require several seconds of compute time
on general purpose hardware, limiting the applicability
of the approach and incurring high energy usage. By
implementing hardware support for Bloom filters, WSN
applications can achieve significant energy reductions
without sluggish performance. The Bloom filter
hardware accelerator improves performance and energy
use by optimizing several algorithms in hardware. The
accelerator natively supports Bloom filters, multiply and
shift hashing, and Golomb-Rice coding support for data
aggregation, near-random hashing, and data
compression, respectively. The following sections
describe these algorithms in detail.

A. Bloom filters
Bloom filters efficiently store set membership of

large items by combining data in a large bit array. Using
a small number of hash functions, h1 . . . hk, Bloom
filters reduce storage costs up to 70% [7]. Many
applications, including spelling checkers and distributed
web caches currently use Bloom filters. Other work has
also suggested the use of Bloom filters in hardware [8,
9, 10].

Our hardware accelerator implements a specific
range of Bloom filter configurations: the bit array is
16KB, up to 16 hash functions are available, and 32-bit
items are supported. Initially, we set every bit in the
array to 0, to create an empty Bloom filter. We insert
items, as illustrated in Figure 1, by hashing the item xi
with every hash function h1 . . . hk. The results of these
hash functions h1(xi) . . . hk(xi) are addresses to bits in
the array, which we set to 1. As we insert more items,
the number of 1’s in the Bloom filter increases. When
inserting items, we may find some bits already set to 1

 27

due to previous item insertions writing to the same bit
address.

Querying to check if an item xi is in the Bloom
filter is similar to insertion. We hash the item with every
hash function h1 . . . hk and check each bit’s value at
addresses h1(xi) . . . hk(xi). If any hash function points to
a 0 bit, we know with certainty the item is not in the
Bloom filter.

Figure 1: Inserting an item into a Bloom filter

Table 1: Bloom filter configurations (16KB bit
array, 32-bit elements). Bits per item applies to full

Bloom filters
Conf
igur
ation

Item
Capacity

Bits
per

Item

Hash
Functions

(k)

False
Positive

Rate
1 13500 9.71 7 < 1%
2 9000 14.56 10 < 0.1%
3 6500 20.16 14 < 0.01%

The item is in the Bloom filter with high
probability if all hash functions point to 1 bits, but we
cannot know with certainty. These “false positive”
errors, although rare, occur when other inserted items
hash to the same bits as the queried item. The false
positive rate can be pre-configured as required by the
application, typically from 1% to 0.01%.

Items cannot be removed from a Bloom filter.
Hypothetically, an item could be removed by setting
any of the item’s corresponding array bits to 0.
However, many inserted items may hash to the same bit,
and removing one item may inadvertently remove
several other items. If a Bloom filter becomes full, all
elements can be cleared by setting all bits in the array to
0.

The false positive rate, item capacity, and energy
requirements to insert or query an item are determined
by k, the number of hashes used by the Bloom filter.
When k is larger, the false positive rate decreases.
However, smaller values of k result in Bloom filters
with a larger item capacity and lower energy cost per
item insertion or query. This trade-off is illustrated in

Table 1. A detailed analysis of Bloom filter
configuration is available in [7].

Bloom filters merge by bitwise ORing bit arrays,
assuming both Bloom filters use the same bit array
lengths and hash functions. This property makes
aggregating data in a WSN spanning tree a trivial task:
parents can merge Bloom filters from child motes
quickly, insert their own items, and transmit the
aggregate Bloom filter to its own parent.

The Bloom filter is considered full when half of the
array’s bits are 1. At this point, further insertions will
dramatically increase the false positive rate. Bloom
filter storage is most efficient when full, as the bit array
is always a constant length. For example, configuration
1 in Table 1 can store 32-bit elements using less than 10
bits when full.

B. Multiply and Shift Hashing
Multiply and shift hashing, described by

Dietzfelbinger et al. [11], is simple, yet effective. Each
hash function h1 . . . hk requires a hash key HashKey1 . .
.HashKeyk. Hash keys are odd integers randomly chosen
before the Bloom filter is used. The accelerator
represents hash keys as 32-bit integers.

To perform a hash hi of element xj , we calculate
32

32

() mod 2
()

2
i j

i j b

HashKey x
h x −

×
= (1)

where b is the number of bits in the Bloom filter bit
array address. For the 16KB bit array used by the
accelerator, b = 17. The modulo and divide are powers
of two and can be efficiently implemented with a bit
mask and shift.

C. Golomb-Rice Coding
The accelerator implements Golomb-Rice coding, a

popular compression and decompression method used
in Apple’s Lossless Audio Codec (ALAC) and Lossless
JPEG (JPEGLS) [12, 13]. As noted in Section III.A, a
Bloom filter contains more 0s than 1s until filled.
Therefore, sparsely filled Bloom filters (under 70% full)
can reduce Bloom filter size through Golomb-Rice
coding. The algorithm, a form of run length encoding, is
simple to implement, and therefore power efficent.

1) Compression
First, the number of 1s in the bit array are counted

to determine the “remainder part” length l. The relation
between

1s in the bit array and l is precomputed; only a
quick lookup is needed to determine the remainder part
length.

Item

Hash 1 Hash 2 Hash k

Bit
Address 1

Bit
Address 2

Bit
Address k

Bloom Filter Bit Array

 28

Second, the bit array is iterated from start to finish,
scanning for run lengths of 0s between 1s. For each run
length of n 0s, the remainder part r and quotient part q
must be calculated:

2l

nr = (2)

mod 2lq n= (3)
After calculating r and q, we write r 0s to the

compressed bit stream, followed by a 1. q is then
written directly, using l bits. This process is used to
write all run lengths in the uncompressed bit stream
until the end is reached. The second step’s
implementation does not require any expensive
divisions or modulos; a counter is kept of the current 0
run length. If the next bit is a 0, the counter is
incremented. If the counter reaches 2l, a 0 is written to
the compressed stream and the counter is reset. If the
next bit is a 1, a 1 is written to the compressed stream,
followed by the counter’s value using l bits. Therefore,
Golomb-Rice compression can be reduced to many
simple bit operations.

2) Decompression
Decompression is the inverse of compression. We

read in one run length at a time from the compressed bit
stream, knowing the quotient part ends at the first 1 and
the quotient follows for the next r. The run length is
calculated:

2ln q r= × + (4)

Once the run length n is calculated, n 0s are written
to the uncompressed bit stream, followed by a 1. This
process continues until the final run length is
decompressed. Implementation is simpler: when reading
the quotient part, 2l bits are written to the uncompressed
bit stream for every 0 in the compressed bit stream.
When a 1 is read in the compressed bit stream, we
switch to remainder part mode. In remainder part mode,
we write 2d 0s to the uncompressed bit stream for every
1 in the compressed bit stream, where d is the binary
digit in the remainder. After the last, or 0th digit, is
reached in the compressed bit stream, a 1 is written to
the compressed bit stream and we switch back to
quotient part mode. Therefore, Golomb-Rice
decompression consists of several simple bit operations.

IV. ASIP DESIGN METHODOLOGY
A. ASIP Design Methodology

Gloria et al [6] defined some main requirements of
the design of application-specific architectures.
Important among these are as follows:

1 Design starts with the application behavior.

2 Evaluate several architectural options.
3 Identify hardware functionalities for speed up

4 Introduce hardware resources for frequently used
operations only if it can be supported during
compilation.

 ASIP fits in between these two and provides
flexibility at lower cost than general programmable
processors. According to MK Jain et al [4] design of
ASIP can be typically divided in five steps which is
shown in Figure 2:

a) Application Analysis
b) Architecture design space Exploration.
c) Instruction-set generation
d) Code synthesis
e) Hardware synthesis

Figure 2: Flow Diagram of ASIP design Methodology

1) Application Analysis
ASIP design starts with analysis of application,

analysis of test-data and design constraints. An
application written in any high level language is
analyzed both statically and dynamically which is then
stored in some suitable intermediate format, which is
then used in the subsequent steps.

2) Architecture Design Space Exploration
It involves identifying the broad architectural

features of the ASIP. First of all, the architectural space
to be explored is defined, keeping in view the parameters
extracted during application analysis and the input
constraints. Architecture is defined using some standard
Architecture Definition Language (ADL).

 29

3) Instruction set generation
Instruction set is to be generated for that particular

application and for the architecture selected. This
instruction set is used during the code synthesis and
hardware synthesis steps.

4) Code synthesis
Compiler generator or retargetable code generator is

used to synthesize code for the particular application or for a
set of application.

5) Hardware synthesis
In this step the hardware is synthesized using the

ASIP architecture template and instruction set
architecture starting from a description in
VHDL/VERILOG using standard tools.

B. ASSIST: A Scheduler based ASIP Design
Methodology

The overall flow diagram of ASSIST methodology
is shown in figure 3. The inputs include application
behavior in C, performance, power and area constraints,
basic processor configuration, pipeline templates and
memory access models, power models for various
components, area and clock period models. The
application is analyzed with the help of a profiler to
extract application parameters. Design space
exploration is an iterative process and it starts with a
basic configuration (or minimal) that would be
synthesized. The performance estimator estimates
performance based on present processor and memory
configuration, application parameters and input models.
The configuration selector compares estimates to the
user specified constraints to generate the next potential
configuration. This process is iterated until a
satisfactory configuration is generated which is used by
a retargetable compiler generator in generating a
customized compiler and by a VHDL synthesizer to
generate a synthesizable VHDL code for the customized
processor.

Figure 3: ASSIST (A Scheduler based ASIP Design

Methodology)

C. Integrated On-Chip Storage Exploration
Technique

Storage exploration is a part of the design space
exploration phase of overall methodology. Proposed
technique for storage space exploration is shown in
figure 4. Cycle count for application execution on the
chosen processor and memory configuration is
estimated. A parameterized model for processor as well
as memory is considered. Parameters of data cache
include size, line size, associativity, replacement policy
and access time. Processor configuration specification
includes register file and windows organization along
with pipeline information and functional unit (FU)
operation capability and latency.

Register allocation is done on unscheduled code
using reuse chains. We have defined cost of merging of
reuse chains considering spills. We have also developed
systematic way of merging these reuse chains. A
priority based resource constrained list scheduler is used
for performance estimation. Global register need
estimation is done using variable usage analysis. Further,
we estimate overheads due to limited register windows
and data cache memory. We have integrated this
technique to explore register file size, windows and
cache configurations.

Overall execution time estimate (ET) for an
application for the specified memory and processor
configuration can be expressed as follows.

ET = etR+ohW +ohC (5)
Where
etR : Execution time when register file contains R
registers.

 30

ohW : Additional schedule overhead due to limited
windows.
ohC : Additional schedule overhead due to cache misses.
etR can be further expressed by the following equation.

etR = bet +ohdep +spillR * tR (6)
Where
bet : Base execution time considering constraints of
resources
other than storage.
ohdep : The overhead due to additional dependencies
inserted during register allocation.
spillR : The number of register spills.
tR : The delay associated with each register spill.
Computation of etR is described in the next Section. ohW
can be
further expressed by the following equation.

ohW = spillw * tW (7)
Where
spillw : Number of window spills and
tW : Delay associated with each register window spill.
ohC can be further expressed by the following equation.

ohC = missC * tC (8)
Where
missC : Number of cache misses and
tC : The cache miss penalty.

tW is computed by knowing register window size
and the latency of ‘store’ instruction. tC is computed
using block size and the delays associated in each data
transfer. Storage configuration selector selects suitable
processor and memory configuration to meet the desired
performance by knowing all the execution time
estimates.

Figure 4: Integrated On-Chip Storage Exploration

Technique

D. Exploration Results
1) Trade-off between Number of Register
Windows and Window Size
We are interested in trade-off between the number

of registers and window sizes. For each total number of
registers, window size would be different for different
number of windows. While generating results (figure 5),
we assumed that register file will be distributed in
windows of equal sizes. We also assume that within a
context, number of registers available for register
allocation is equal to window size. Depending on the
performance requirement, suitable register file size can
be chosen and for the chosen register file size, number
of windows and hence the window size (number of
registers in a window) can be decided. On one end,
when the number of windows is small, the time
overhead due to context switches dominates the cycle
count. At the other extreme, when the number of
windows is large for the same total number of registers,
the individual window size becomes small and the
overhead due to load and stores dominates the cycle
count.

Figure 5: Trade-off between number of windows and

their sizes

2) Trade-off between Register File Size and on-
chip Data Cache
Execution time estimates for various benchmark

applications for different register file sizes and different
data cache sizes were generated. We have not
considered the impact of cache size variation on
memory latency, but it can be considered by choosing
appropriate values of a1 and a2. Consider the results
produced for matrixmult program for different register
file size and memory configurations (figure 6). Some
interesting trade-offs can be observed. Based on the
generated execution time estimates and the input
performance constraint, suitable configurations can be
suggested.

 31

Figure 6: Results for matrix-mult

3) Execution Time Validation
Performance estimations with varying on-chip

storage configurations for selected benchmarks
applications were done. Three processors namely ARM
(ARM7TDMI a RISC) [14], Trimedia (TM-1000 a
VLIW) [15] and LEON (a processor with register
windows) [16] were chosen for experimentation and
validation. TM-1000’s five-issue-slot instruction length
enables up to five operations to be scheduled in parallel
into a single VLIW instruction. To know correctness of
our techniques, we chose to validate our result against
the numbers produced by standard tool sets. Validation
shows that our estimates are within 10% compared to
the actual performance numbers produced by standard
tool sets. The actual figures were 9.6%, 3.3% and 9.7%
for ARM7TDMI, TM- 1000 and LEON respectively.
Further, this technique was nearly 77 times faster
compared to the simulator based technique. Results
generated were also validated against VHDL level
simulation for collision detection application. The
execution time estimates produced by our estimator
(443278 cycles) are within 10.33% compared to the
estimates produced by tsim (494375 cycles) and within
5.26% compared to the estimates produced by VHDL
simulation

V. ASIP ARCHITECTURE
This paper leverages the mote architecture

described by Hempstead, et al. [17] which provides a
framework for custom hardware accelerators. The
architecture proposes a lightweight event processor for
managing power and offloading tasks to hardware
accelerators. High-level events and tasks are decoded
on the event processor and deployed to accelerators via
memory mapped operations. A simple processor
executes any operations not explicitly handled by
accelerators. We anticipate implementing hardware
accelerators as synthesized standard cells (e.g. ASIC
flow) or through a shared on-chip programmable FPGA
substrate.

We designed the Bloom filter hardware accelerator
to work within the processor architecture of [17] and
support a 16-bit bus. The accelerator consists of several
modules, illustrated in Figure 7. In the following
sections, we will examine each major module in the
Bloom filter accelerator and discuss design decisions
for reducing energy and delay.

A. Instruction Decoder
The Instruction Decoder is the command center for

the Bloom filter accelerator. In contrast to general
purpose processors, the accelerator’s instruction
decoder is simple because it only handles a small set of
32 Bloom filter instructions. The Instruction Decoder
receives control signals from the event processor to
determine the current operation, and sends control
signals to other modules in the accelerator (shaded in
Figure 7). As the cycle completes, the Instruction
Decoder monitors progress and notifies the Event
Processor using acknowledgment signals and interrupts
when appropriate.

B. Data Builder
As noted earlier, all hardware accelerators must

support a 16-bit bus. However, several Bloom filter
operations require 32-bit hash keys and 32-bit items.
The Data Builder is used to combine 16-bit segments
from the data bus over two cycles into a 32-bit integer.
If future designs require larger items, the Data Builder
can be easily modified to combine segments over more
cycles. We chose to design the data builder as a distinct
module for reuse in future accelerators.

C. Hash Unit
The Hash Unit is responsible for managing hash

keys and performing multiply and shift hashing. When
initially powered, the mote’s code must save the correct
hash keys. These hash keys are rarely changed and
could be statically programmed. However, regularly
changing hash keys could deter snooping on gathered
data. Once the hash keys are saved, the Hash Unit uses
multiply and shift hashing to generate bit addresses for
item insertion and querying. As noted in Section III.B,
we simply take the 31st through 15th bits from the hash
key-item multiplication, and do not require a full 32-bit
multiplication. We implemented this complicated
operation in hardware so that the calculation could be
performed within one cycle. These hash operations are
extremely fast in hardware and we are able to use the
hash result to access memory in the same cycle.

D. Hash Key Memory
The Hash Unit uses the Hash Key Memory to store

hash keys. The memory stores up to 16 hash functions.
As only 14 hash functions are required for a false
positive rate below 0.01%, no need exists for more hash

 32

key capacity. We separated the Hash Key Memory from
the Hash Unit for applications which never change hash
keys. In this case, the Hash Key Memory could be
replaced by a lower power ROM.

E. Counter
The counter is used when iterating through hash

keys for item insertion or querying, and for several
operations iterating through the entire Bloom filter
memory. Because these operations require several
cycles, the counter is used to remember the next hash
key or address in Bloom filter memory at the next cycle.
We chose to create a distinct counter module because it
is used by the Memory Access Controller and Hash
Unit, although never simultaneously. By sharing the
counter, we reduce power consumption by eliminating
counting-related memory by half.

F. Bloom Filter Memory
The Bloom filter bit array is stored in four 2K x 16-

bit modules. The bit array is stored sequentially by
address, so that bits are stored in the following order:
Module1[0], Module2[0], Module3[0], Module4[0],
Module1[1], and so on. We chose a four-module
configuration to provide access to all four memory
modules simultaneously, boosting performance by up to
4x. Only one memory access is possible per cycle, so
increasing the amount of memory available at a given
cycle can greatly improve performance. We also
decided to use four modules with a 16-bit data bus
rather than one module with a 64-bit data bus because
some Bloom filter operations only use one block per
cycle. In this case, the unused three blocks can be
disabled to reduce dynamic power consumption. We
decided not to support an even larger data bus because
significant additional logic would be required and wider
bus lengths would rarely be fully utilized.

G. Memory Data Controller
The Memory Data Controller manages data stored

in the Bloom filter memory. The accelerator supports
several Bloom filter operations, each writing to memory
in a distinct style. Insertions and queries only modify
one bit at a time, while other operations may modify
one block or four blocks per cycle. The Memory Data
Controller is responsible for ensuring each operation
can write as many or as few bits as is required.

The Memory Data Controller also counts the
number of 1s inserted into the Bloom Filter at every
cycle. We use this counter during compression
operations to eliminate the need for an additional full
memory iteration as described in Section III.B.I. As
previously noted, memory access can be a bottleneck,
so this optimization is critical for performance.

H. Memory Address Controller
The Memory Address Controller coordinates with

other blocks to correctly set the addresses of each of the
four Bloom filter blocks. Although item insertion and
query operations randomly jump from bit to bit in
memory, some operations may sequentially read one
module at a time, and others read sequentially from all
blocks simultaneously. During sequential operations,
the Memory Address Controller remembers where
processing ended in the last cycle so that the operation
can be easily resumed.

Figure 7: Bloom filter hardware accelerator
hardware flow: arrows indicate the direction of

information, shaded blocks indicate modules
controlled by the Instruction Decoder.

I. Decompressor
The Decompressor reads 16-bit Golomb-Rice

encoded Bloom filter blocks from the data bus and
unpacks up to 64 bits of uncompressed Bloom filter.
The Decompressor guarantees the entire compressed
block will be processed, or 64 bits of uncompressed
Bloom filter will be unpacked. These limits are solely
due to the 16-bit data bus and 64-bits of Bloom filter
memory accessible during a given cycle. Although these
limits require significant additional logic, we decided to
support this higher performance design to avoid
elevated computation times when processing Bloom
filters containing many elements.

The Decompressor is composed of 16 serially-
connected bit decompressors. This design allows each
compressed bit to be decompressed serially, as
described in the implementation portion of Section
III.C.2. Although each bit could be decompressed in
parallel and reassembled, the serial design allows bit
compressors to be disabled when the uncompressed
stream is full, thus reducing dynamic power. A dynamic
style would increase the speed of decompression, but is

 33

unnecessary due to the slow 100 KHz clock frequency
used by the Hempstead processor.

J. Compressor
The Compressor reads 64 bits of uncompressed

data from the Bloom filter bit array, producing up to 16
bits of compressed data per cycle. These bit limitations
are due to memory access and data bus limitations,
respectively. As a result, compressed Bloom filters can
be produced 4x faster than uncompressed Bloom filters.
As noted in Section V.I, supporting these guarantees
requires additional logic, but gains in performance make
this addition worthwhile.

The Compressor design, is composed of 64 serially
connected single-bit compressors. Each single-bit
compressor performs the implementation discussed in
Section III.C.1, adding a single bit to the compressed bit
stream as needed. Although the compressors could
execute in parallel and reassemble the compressed bit
stream, serial execution allows later bit compressors to
be disabled if no room is available in the compressed bit
stream. Due to the slow operating frequency, parallel
processing is not required.

VI. CONCLUSION
In this paper we have proposed an ASIP solution

for a low energy and performance efficient wireless
sensor networks. Proposed ASIP approach is validated
for three versatile standard processors and results are
encouraging. Since proposed approach uses scheduler
based approach for performance estimation, it is
significantly better than traditional time consuming
simulator based approaches. In addition to that our
approach is able to handle larger design space compared
to simulator based approaches. We plan to implement at
prototype level for an efficient wireless sensor network
in future.

REFERENCES
[1] S. Madden, M.J. Franklin, J.M. Hellerstein, and W.

Hong, Tag: a tiny aggregation service for ad-hoc sensor
networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146,
2002.

[2] T. Mudge. Power: A first-class architectural design
constraint. Computer, 34(4):52–58, 2001.

[3] A. Wang, B. H. Calhoun, and A. P. Chandrakasan. Sub-
threshold Design for Ultra Low-Power Systems.
Springer, 2006.

[4] M.K. Jain, M. Balakrishnan, and A. Kumar. ASIP Design
Methodologies: Survey and Issues. In Proceedings of the
IEEE / ACM International Conference on VLSI Design.
(VLSI 2001), pages 76–81, January 2001.

[5] A. D. Gloria and P. Faraboschi. An Evaluation System
for Application Specific Architectures. In Proceedings of
the 23rd Annual Workshop and Symposium on
Microprogramming and Microarchitecture. (Micro 23),
pages 80–89, November 1990.

[6] N. Ghazal, R. Newton, and J. Rabaey. Retargetable
Estimation Scheme for DSP Architecture Selection. In
Proceedings of the Asia and South Pacific Design
Automation Conference, pages 485–489, January 2000.

[7] A. Broder and M. Mitzenmacher. Network applications
of bloom filters: A survey. In Allerton, 2002.

[8] A. Roth. Store vulnerability window (svw): Re-execution
filtering for enhanced load optimization. In ISCA ’05,
pages 458–468. IEEE Computer Society, 2005.

[9] J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai.
Bloom filtering cache misses for accurate data and
prefetching. In ICS ’02, pages 189–198. ACM Press,
2002.

[10] S. Dharmapurikar and J. Lockwood. Fast and scalable
pattern matching for content filtering. In ANCS ’05:
Proceedings of the 2005 ACM symposium on
Architecture for networking and communications
systems, pages 183–192, New York, NY, USA, 2005.
ACM.

[11] M. Dietzfelbinger, T. Hagerup, J. Katajainen, and M.
Penttonen. A reliable randomized algorithm for the
closest-pair problem. J. Algorithms, 25(1):19–51, 1997.

[12] J. Meany. Golomb coding notes. http://ese.wustl.
edu/class/fl06/ese578/GolombCodingNotes.pdf, 2005.

[13] K. Sayood. Introduction to Data Compression. Morgan
Kaufmann Publishers, second edition, 2000.

[14] ARM Ltd. Homepage. “http://www.arm.com”.
[15] Trimedia Homepage. “http://www.trimedia.com”.
[16] LEON Homepage. ”http://www.gaisler.com/leon.html”.
[17] M. Hempstead, N. Tripathi, P. Mauro, G.-Y. Wei, and .

D. Brooks. An ultra low power system architecture for
sensor network applications. In ISCA ’05, pages 208–
219. IEEE Computer Society, 2005.

