
International Journal of Power Control Signal and Computation(IJPCSC)
Vol3. No1. Jan-Mar 2012 ISSN: 0976-268X

www.ijcns.com

59

Service Oriented Architecture using ISO RM-ODP with respect to
Engineering and Technology Viewpoints

C. Madana Kumar Reddy1, Dr. A.Ramamohan Reddy 2

1Associate Professor of M.C.A, Annamacharya Institute of Technology and Sciences,Rajampet, Kadapa(dt), AndhraPradesh,c_mkr@yahoo.co.in,
Mobile Number-91+9441105151

2 Professor and Head of CSE Department, Sri Venkateswara University College of Engineering, S.V.University, Tirupati, ramamohansvu@yahoo.com

Abstract
The proposed Service Oriented Architecture

using ISO Reference Model for Open Distributed
Processing is a high performance technique for
providing effective services to the users. This
architecture consists of five different viewpoints
namely Enterprise viewpoint, Computational
viewpoint, Information viewpoint, Engineering
viewpoint and Technology viewpoint. This paper
discusses the details about the Engineering and
Technology viewpoints. Engineering viewpoint gives
the details related to web services composition, service
chains, choreographies, exception handling, service
clustering and patterns in Service Oriented
Architecture. The main concerns of this viewpoint
are communication, computing systems, software
processes and the clustering of computational
functions at physical nodes of a communications
network. In SOSA several services need to
cooperatively process one message, the failure of one
service results in a system failure. The patterns address
common security problems related to Web services. It
also gives the various problem situations and its
solutions. The Technology Viewpoint focuses on the
technology aspects related to the system and its
environment. It describes the hardware and
software components used in the distributed
system together with the infrastructure which
allows distributed components to communicate.

Index Terms—performance, Engineering viewpoint,
choreographies, exceptions, Service, Technology
viewpoint

1. INTRODUCTION
 These viewpoints describes the main concerns.
These concerns include how the different web services
are composed, service chains, choreo-graphies,
exception handling, service clustering and patterns in
Service Oriented Architecture. Each service
implements only a part of the overall functionality, in a
similar fashion to database systems. In which it is
necessary to execute several services as one single
logical operation. This is realized by means of
transactions. Choreographies are realized through
message routing. Technology viewpoint describes the
hardware and software components used in the
distributed system for this Architecture.

2. ENGINEERING VIEWPOINT
 According to the RM-ODP, the Engineering
Viewpoint describes the system as a network of com-
puting nodes. The main concerns of this viewpoint are
communication, computing systems, software
processes and the clustering of computational
functions at physical nodes of a communications
network [1]. The computational nodes in our system
are security services. This section will describe how
these services can be combined, how they communi-
cate with each other and how they can be distributed.

A. Web Services Composition

Web services composition (aggregation) refers to
the composition of multiple Web services in a process
flow. Such processes are described in terms of
exchanged messages, business logic and the order of
execution for interactions. They can range from simple
ones (e.g., one Web service calls another) to very
complex ones which span several applications and
organizations and result in long lived, transactional,
multi-step interactions. There are two models for
aggregating services [2]: choreography and orchest-
ration. The difference between the two is that in
orchestration the execution is controlled centrally from
a single entity. Whereas, choreographies are more
collaborative in nature, and each party involved in the
process controls a part of the execution. Because
each of the approaches has its advantages, both of
them are valid ways for composing security services.

B. Service Chains

Figure.1 Service Chains
Messages originating from the requester are travelling

along the forward chain to the protected service. After

Forward
Chain

Return
Chain

Security
System

Servi-
ce

Requ-
ester

Prote
cted
Servi

ce A B

C D

. .

. .

. .

. .

International Journal of Power Control Signal and Computation(IJPCSC)
Vol3. No1. Jan-Mar 2012 ISSN: 0976-268X

www.ijcns.com

60

processing the request, the service generates a response
message which travels along the return chain back to the
requester. The forward and return chain may also contain
orchestrations which are exposed as services.

C. Realization of Choreographies

Choreographies are realized through message routing.
The two patterns that can be used for the realization of
choreographies are itinerary routing and content-based
routing.

 Itinerary Routing
 In itinerary routing a routing slip is attached to the
message describing the route that the message should
follow. The routing slip fully describes the choreography.
In an execution environment, after a service has processed
the message, it is the responsibility of the messaging
middleware to dispatch the messages according to the
routing slip. A gateway service would receive the message
from the requester, inspect it and attach a routing slip
describing both the forward and the return chains. In this
way, the protected service is aggregated together with the
security services into one choreography. The advantages of
this approach are that the choreography is centrally
described at the gateway service which is the one entity
attaching the routing slip. This is very convenient for the
management and administration of the whole system.

 Content-Based Routing
 In the case of content-based routing, after a message is
processed by a service, it will be inspected and, depending
on its contents, the next service along the chain is
determined. In networking, this kind of routing is called
next-hop routing, as each node determines the next
destination of the message, based on some internal routing
table. Here the choreography is specified through routing
tables which are distributed (each router has its local routing
table). The choreography is managed in a distributed
fashion.

 Mixed approaches
 In this case parts of the choreography are centrally
described through itineraries, while the rest is specified
through routing tables. This is a good way to combine
multiple choreographies together or to handle exceptions.

D. Transactions

Each service implements only a part of the overall
functionality, in a similar fashion to database systems. In
which it is necessary to execute several services as one single
logical operation. This is realized by means of
transactions. Atomic operations can be implemented by
means of transactions which are supported at the mid-
dleware layer. Because security services run on top of the
middleware, they can make use of transactions. The
framework contains two specific coordination types: WS-
Atomic Transaction for short duration [3], ACID transactions
and WS-Business Activity for longer running business
transactions [4].

E. Exception Handling
Security services may throw exceptions if they cannot

fulfill their tasks. Because exception messages are distinctly
marked, the messaging middleware can take special action.
The simplest strategy for exception handling is to return the
exception messages back to the requester. Because they
contain information regarding the failure reason and
details about it, the requester can fix the problem and resend
its request. However, more complex strategies can be applied
such as routing exceptions to a central exception-handling
service, that implements exception recovery strategies,
releases any resources associated with the request, unrolls
any transactions pending and further processes the exception
message (through either enrichment or filtering) before
sending it back to the service requester.

F. Service Clustering

In SOSA several services need to cooperatively process
one message, the failure of one service results in a system
failure. It is most probable that some services will spend
more time in processing a message than others. This results
in some services being performance bottlenecks for the
whole system. To address these issues, and still profit from
the SOSA model, solutions available for server clustering
can be deployed. In such a design, several services are
configured to appear as one single logical service. Show in
Figure 2.

Figure.2 Service Clustering
This technique can be used for enhancing availability,

scalability or both. Clustering is usually supported both at
the networking layer as well as at the middleware layer.
The security services can easily take advantage of these
features.

G. Patterns in SOSA

The patterns address common security problems
related to Web services. The purpose of this is to
document how security services can be designed and
coupled together in order to build a SOSA security
solution. Because of the loosely-coupled nature of the
system, it is easy to assemble together several patterns and
build complex security solutions. Each pattern has described
in terms of the context, problem, solutions, variations, and
benefits.

Logical
Service

Service
Cluster

Physical Services

. . .

Message

International Journal of Power Control Signal and Computation(IJPCSC)
Vol3. No1. Jan-Mar 2012 ISSN: 0976-268X

www.ijcns.com

61

i. The Gateway Pattern
Context: External applications require access to one

or more Web services which are deployed inside the private
network. The access to these services is restricted to
authenticated users. External applications should not be
able to access or determine the existence of services and
other resources deployed inside the private network.

Figure.3Gateway Pattern

Problem: How to make Web services in the
private network available to external applications, without
exposing the other resources?

Solution: The solution involves a Gateway service located
at the perimeter of the network, in a demilitarized zone.
This pattern builds on the perimeter security idea.

 The Gateway Service is the only entity visible from the
external network. The protected service together with the
rest of the security services are hidden from applications
running in the external network. The tasks of the Gateway
service are as follows:
• Transform the message into the canonical message

format used by the security services with annotations.
• Verify security relevant information provided by the

transport protocol (i.e. IP, SSL, HTTP, etc).
• Determine the forward and return chains for the given

request message.
• If the security system is implemented using

asynchronous messaging and the protected service
requires a request-response message exchange pattern,
the Gateway must correlate the request messages with
the responses and deliver the response to the
requesting party.

Benefits:
• Concentrate Security Administration: The rules

describing which security services need to be invoked
for which type of requests are centrally managed by
the Gateway service. The Gateway Service acts as a
single point of administration for the security policy.

• Multiple Transport Protocols: It provides the same
service on a variety of transport protocols. By this, the
Web service logic and the security implementation are
decoupled from the transport protocol on which the
Web service is being offered.

ii. The Federation Pattern
Context: A protected Web service must accept users which
are registered in several security domains. Each domain

contains a user management system which stores
attributes about the registered users. These attributes are
required during the security check process. External
applications send requests to the protected service that
contain some kind of authentication credentials.
However, from the credentials, it is not possible to know
the domain where the requester is registered.

Problem: How to retrieve the attributes of the
requester from the home domain?

Solution: Because the user's home domain is not
known, all identification services must be invoked. In order
to optimize this operation, the splitter-aggregator pattern
is used (Shown in figure 4). A splitter broadcasts the
message to all identification services. The execution of
these services is done in parallel, thus optimizing execution
time and minimizing failure. An aggregator service joins the
messages together by simply dropping the messages
containing failures.

Explicit Federation: In the case of an explicit
federation, it is possible to determine the user's home
domain from the provided information; a content-based
router can be used instead of the splitter (shown in fig. 5).
The router determines the home domain and routes the
message to the associated identification service. Because
the message is not split, there is no need for an aggregator
service.

Figure.4 Federation pattern - knowing user's home
domain

Benefits:
• Several domains are aggregated together in a manner

totally transparent for the user.
• The solution is optimized in terms of time (execution

is parallel) and fault tolerance (if the identification
service of one domain is down, the users in the other
domains are not affected).

• Several authentication methods (password, digital
signature, etc.) can be supported by delegating the
verification process to different verification services.

External
Network

Perimeter
Network

Private
Network

Services Firewall Firewall

Service
Requester

Gateway

International Journal of Power Control Signal and Computation(IJPCSC)
Vol3. No1. Jan-Mar 2012 ISSN: 0976-268X

www.ijcns.com

62

• The identification service receives the whole message,
including the service request and the schedule of the
message. It is possible to build identification services
that inspect the service request and the schedule of the
message and, based on this information, respond with
different attributes or attribute values. Such services
are able to enforce privacy on behalf of their users.

iii. Sequential Decision Making Pattern
Context: The decision as to whether or not a given
Web service can be accessed in a certain context cannot
be taken in a single place or by a single entity. One

justification for this could be the fact that the access
permissions are not all stored in a single place, and in
order to grant the access, the complete set of
permissions is required. Another scenario could be one
where the resource is under the authority of several
security domains and, in order to take the access
decision, the cooperation of several entities is required
Problem: How to have messages authorized by
multiple entities?

Figure.5 Sequential decision making pattern

Solution: Several Policy Decision Point
(PDP) services are deployed, one for each place
where messages need to be authorized. A single
Policy Enforcement Point (PEP) is deployed,
because the enforcement should be as close as
possible to the resource being protected. The PDP
services, the PEP and the Protected Service are
chained together by means of schedule routing.
Messages are routed such that they sequentially pass
through each of the PDP services. The PDPs inspect
Benefits:
• Several entities can collaborate in taking an access

control decision;
• Enforcement is done in a single place, close to the

resource;
• Through obligations, requirements can be specified.

These requirements can refer to decisions taken by
other PDPs or the action of other security services.

3. TECHNOLOGY VIEWPOINT
According to the RM-ODP [10], the Technology

Viewpoint focuses on the technology aspects related to the
system and its environment. It describes the hardware and
software components used in the distributed system
together with the infrastructure which allows the
distributed components to communicate [11].

Because SOSA is a security system for Web services
and because itis an architectural design, several
implementations are possible. The purpose of the
Technology Viewpoint is therefore not to present the
implementation of the system, but rather to demonstrate
how such a system can be built and to show how the most
important aspects regarding SOSA can be realized by
means of Web services technologies.

A. Standards

There are several possible realizations for SOA, for
messaging systems and also several possible realizations
for Web services. An implementation for SOAP

messaging was considered desirable as it offers
interoperability with other platforms.
SOAP All messages, including the communication with
the service requester, the service provider and the
communication internal to the security system are SOAP
messages . Message routing is implemented based on the
processing model defined by SOAP (SOS!e 1.0 and 2.0).
WS-Security: Security tokens are encoded and attached to
messages by means of WS-Security.
BPEL: Service orchestrations are described in BPEL and
executed through BPEL runtime-engines (SOS!e 1.0 & 2.0).
WS-Addressing: This specification provides enhances
SOAP messaging with addressing capabilities that are
independent of the transport protocol. These are leveraged
by the ESB middleware in SOS!e 2.0 to deliver messages to
services accessed through different transport protocols.

B. SOS!e 1.0

SOS!e 1.0 was derived from SOSIE(Service Oriented
Security - an Implementation Experiment).
Software Platform, Libraries and Tools

The security framework was implemented in Java
using open-source software. Apache AXIS 1.x was
chosen as Web services container as it was the state-of-
the-art implementation at the time. Subsequent versions
of this software were used: 1.2, 1.3 and finally 1.4. This
had several drawbacks, among them the fact that AXIS
1.x has limited support for asynchronous messaging.

Several other open-source libraries are also used by the
implementation, the most important to mention being the
following: Xerces 1.4.4 parser (http://xerces.apache.org/
xerces-j), Xalan 2.7.0 for XPath evaluations (http://xml.
apache.org/xalan-j), WSS4J 1.5.1 as the WS-Security
implementation(http://ws.apache.org/wss4j), OpenSAML
1.1 as the SAML implementation (http://www.opensaml.
org), Log4J 1.2.9 and Commons-HttpClient 3.0.
Security Services Realization and Deployment

The implementation provides a middleware layer upon
which the security services can be built. Figure 7 shows
how the security services are running inside the SOS!e
middleware, which is deployed as a Web service inside
Apache AXIS, which instead runs as a servlet inside the
Tomcat servlet container.

International Journal of Power Control Signal and Computation(IJPCSC)
Vol3. No1. Jan-Mar 2012 ISSN: 0976-268X

www.ijcns.com

63

Figure6. Realization and deployment of security

services
C. SOS!e 2.0

After experimenting with SOS!e 1.0 , it was decided
that a complete rewriting of the framework is necessary
in order to test some new concepts and implementation
possibilities. The major driver for this was the
development of Enterprise Services Bus (ESB) software -
several implementations, both commercial and open-
source, made their way into the market. As the part of it
SOS!e 2.0 was developed.

Developing Custom Security Services in SOS!e 2.0

Several security services were implemented on top of
the SOS!e 2.0 framework. These implement common
security tasks such as authentication by means of user-
name password against an LDAP directory, simple
authorization, audit, accounting or charging by means of
PayPal.

As far as developing custom security services, the

mechanisms built in SOS!e 2.0 are similar to the ones
from the first version of the framework. An
AbstractService class is defined which must be extended
by all security services. This class implements the
functions for processing annotations (retrieval, creation,
deletion, modification).

4. CONCLUSIONS

This architecture is a high performance, Service
Oriented Architecture to support the geospatial data with
scientific applications. The scope of this paper is only up
to the details of the Engineering and Technology
viewpoints of the Reference Model for Open Distributed
Processing. It described the various patterns which are
possible in this architecture along with the service
chains, transactions, exception handling and the
clustering.

REFERENCES

[1] OGC Reference Model. Open Geospatial Consortium
(OGC), 2003. Version 0.1.3,
http://www.opengeospatial.
org/specs/?page=baseline.

[2] Chris Peltz. Web services orchestration and
choreography. Computer, 36(10):46– 52, October
2003.

[3] Web Services Atomic Transaction (WS-
AtomicTransaction). IBM, BEA Systems, Microsoft,
Arjuna, Hitachi, IONA, August 2005. http://www-
128.ibm.com/developerworks/library/specification/w
s-tx.

[4] Web Services Business Activity (WS-
BusinessActivity) IBM, BEA Systems, Microsoft,
Arjuna, Hitachi, IONA.

[5] Hashimi, S., Service-Oriented Architecture
Explained. 2004, O'Reilly

[6] Peng, Z.R. and M. Tsou, Internet GIS: Distributed
Geographic Information Services for the Internet and
Wireless Networks. 2003: Wiley.

[7] Madana Kumar Reddy,C. (2009). Operating
Systems Made Easy. New Delhi: University Science
Press.

[8] ISO/IEC 2382-01: Information Technology - Open
Distributed Processing - Use of UML for ODP
system specifications. International Standards
Organization (ISO), committee draft v02.00 edition,
May 2005.

[9] Martin Gudgin, Marc Hadley, Noah Mendelsohn,
Jean-Jacques Moreau, and Henrik Frystyk Nielsen,
editors. SOAP Version 1.2 Part 1: Messaging
Framework. World WideWeb Consortium (W3C),
June 2003. Status: W3C Recommendation.

[10] ISO/IEC 10746-1: Information technology - Open
Distributed Processing - Reference Model:
Overview. International Standards Organization
(ISO), 1998.

[11] OGC Reference Model. Open Geospatial Consortium
(OGC), 2003. Version 0.1.3,
http://www.opengeospatial.
org/specs/?page=baseline.

Apache Tomcat

Apache AXIS

SOS!e Middleware

Security Services

