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Abstract 
       Multiple range of re encoding scheme have 
been proposed to enhance the effect of large range 
expansion and increase high capacity and large 
efficient power consumption and low heat 
generation of ternary content addressable 
memory based on the packet classification 
unfortunately we can have optimally solve the one 
dimensional problems and made complex 
interaction between dimensions and complicated 
multidimensional problems especially the total 
range of expansions required for each rule and 
each field is the  product of range expansion. 
Therefore in this paper we have to be 
implemented multiple prefix alignment for solve 
the complicated multidimensional problem. This 
multidimensional prefix alignment problems 
potentially combination of the new techniques 
with TCAM optimization and re encoding 
scheme. The simulation result that our technique 
achieve at least 10 times more space reduction in 
case of TCAM space for an encoded classifier and 
its transformers that leads to improved 
throughput complexity and decreased power 
consumption. 
 
Index Terms 

Ternary content addressable memory, 
range reencoding,space reduction, classifier. 
 
I. INTRODUCTION 

Packet classification require a number of 
network services for instance routing, access-control 
in firewalls, policy based routing, provision of 
differentiated qualities of service, and  traffic billing. 
In every case, it is required to decide the flow of 
arriving packet then conclude whether the packet is 
going to forward or filter. If it is forward, identify the 
set of service it should receive, or how much should 
be charged for transporting it. The tagging purpose is 
performed by a flow classifier (also called a packet 
classifier).Packet classifier maintains a set of rules, 
where all packet flow obeys at least one rule. The 
rules order Packet flow belongs to based on the 
packet header(s). For example, source and 
destination IP address values, and particular transport   

port numbers define the packet flow. Otherwise a 
flow could be basically defined by a destination   
prefix and a range of port values. As we shall see, in 
practice a number of different types of rules are used. 
This paper describes a   technique for fast packet 
classification based on an about uninformed set of 
rules. We focus now only on the difficulty of 
identifying the class to which a packet belongs. The 
actions taken for each class  (e.g. packet scheduling 
in an output queue, routing decisions, billing 
[2][3][4][8][11][12][13]) while attractive in its own 
right, is   not the topic of this paper.   The most 
eminent form of packet classification is used to   
route IP data grams. In this case, all of the packets 
intended to the set of addresses described by a 
common prefix may be considered to be part of the 
same flow. In the lead arrival to a router, each   
packet header is examined to conclude the Network-
layer destination address, which identifies the flow to 
which the packet belongs.   
 

Awaiting recently, longest-prefix matching 
for routing look ups could   not be done at high 
speeds. Now that several fast routing look up 
algorithms have been developed, attention has turned 
to the wide-ranging problem of packet classification. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure1: Example network of an ISP ( ISP1) 
connected to two enterprise  networks(E1 and E2) 

and to two other ISP networks across NAP. 
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 Figure 1 shows ISP1 connected to three different 
sites: two enterprise networks E1 and E2 and a 
Network Access Point (NAP) which is in 
 turn joined to ISP2 and ISP3. ISP1 provides a number 
of dissimilar services to its customers, as shown in 
Table 1. 

 
Table 2 shows the categories or classes that the 

router at interface X should classify an incoming 
packet into. The classes specified may or may not be 
mutually exclusive must be noticed(i.e. they may be  
overlapping or non-overlapping), for example the 
first and second class in Table 2 overlap. When 
overlapping happens, we will go after the principle, 
in which rules closer to the top of the list take 
priority, with the default rule appearing last. 
 
 
 
1.1 The Problem of Packet Classification 

 
Packet classifier is used to perform the Packet 

classification, is furthermore called a policy 
database, flow classifier, or simply a classifier.  A 
classifier is nothing a collection of rules or policies. 
A class specified by each rule that a packet may 
belong to based on some standard on F fields of the 
packet header, and connections with every class an 
identifier, classID. The action associated with the 
rule is  uniquely specified by the this   classID 
identifier . All rule has 

  
 
F components. The ith component of rule R, referred 
to as R[i], is a regular expression on the ith field of 
the packet header (in practice, the regular expression 
is restricted by syntax to a simple address/mask or 
operator/number(s) specification). A packet P is said 
to equal a particular rule R, if ∀i , the ith  field of 
the header of P satisfies the regular expression R[i]. 
It is suitable to think of a rule R as the set of all 
packet headers which could match R. When viewed 
in this method, two distinct rules are said to be either 
partially overlapping or non-overlapping, or that one 
is a subset of the other, with parallel set-related 
definitions. When two rules are not  mutually 
exclusive will  be assumed throughout in this 
paper.The tidy in which they appear in the classifier 
will determine their relative priority. We have to 
identify the whole forwarding table in a packet 
classifier is specified by , a packet classifier that 
performs longest-prefix address look ups, each 
destination prefix is a rule, the related next hop is its 
action, the pointer to the next-hop is the associated 
class ID. If we presume that the forwarding table has 
longer prefixes appearing before shorter ones, the 
look up is an example of the packet classification 
problem. 
 
II. RELATED WORK 

Preceding work in optimizing T CAM-based 
packet classification systems plunge into three broad 
categories: circuit modification, classifier 
compression, and range re encoding.   
 
 2.1 Circuit Updation 

Spitznagel et al. proposed adding 
comparators at each entry level to better 
accommodate range matching [14]. While this 
research direction is important, such solutions are 
hard to install due to high cost [6]. 
 
2.2 Compressed Classification 

These optimizations convert a given packet 
classifier to another semantically equivalent classifier 
that requires fewer TCAM entries. The schemes in 
[10], [15],  [25] focus on one-dimensional and two 
dimensional packet  classifiers. The redundancy 
removal algorithms in [19] can shrink TCAM usage 
by eliminating all the redundant rules in a packet 
classifier. In [18], Dong et al. proposed schemes to 
reduce range expansion by frequently expanding or 
trimming ranges to prefix boundaries without 
changing the number of bits used to represent each 
dimension. They confirm correctness by using core 
effective region algorithms in [19]. In concentrate, 
they insert the new rule before the rule being 
modified and check if the new rule is redundant. In 
dissimilarity, our prefix alignment algorithm 
mitigates range expansion by intelligently adding bits  

Service Example 
Packet Filtering Den all traffic from ISP3 

(on interface X) destined to 
E2 

Policy Routing Send all voice-over-IP 
traffic arriving from E1 (on 
interface Y) and destined to 
E2 via a separate ATM 
network 

Accounting & 
Billing 

Treat all video traffic to E1 
(via interface Y) as highest 
priority and perform 
accounting for the traffic 
sent this way. 

Traffic Rate 
Limiting 

Ensure that ISP2  does not 
inject more than 10Mbps of 
email traffic and 50Mbps of 
totaltraffic on interface X. 

Traffic Shaping Ensure that no more than 
50Mbps of web traffic is 
injected into ISP2 on 
interface X. 
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to a given dimension to increase the number of   
prefix boundaries. In [20] Meiners, et al. proposed 
finding locally minimal solutions by using greedy 
algorithm that along each field and combines these 
solutions into a smaller equivalent packet classifier. 
In [21], Meiners et al. proposed the first algorithm 
that can reduce a given classifier into a non-prefix 
ternary classifier. 
 
2.3 Re encoded of Ranges  

Prior range re encoding schemes falls into 
two categories:  
i) Range re encoding  that only consider rule set size, 
often at the expense of rule width [22], [23], [24], 
[25]  and 
ii) Range re encoding that attempt to both compress 
rule set size and rule width  [26], [27], [28],[29]. In 
[24], Liu proposed a method that allocates specific 
TCAM column bits to represent ranges in a  manner 
like to Lakshman and Stiliadis’ software bitmap 
classification method [6]. Lakshminarayan et al. [30] 
proposed a scheme called fence encoding, which 
encodes interval ranges as a range of unary numbers. 
Fence encoding has an growth factor of one, meaning 
all ranges can be encoded with one string, but the 
number of unary bits required for each  rule is 
affordable.  
 

To reduce rule width, Lakshminarayan et,al. 
proposed DIRPE, which compresses the width of 
fence  encodings at the expense of a larger expansion 
factor. Bremler- Barr and Hendler [22] proposed 
SRGE, which utilizes the structural properties of 
binary reflected gray codes to shrink range expansion 
without increasing rule width. Lunteren and 
Engbersen proposed a hierarchy of three methods, P 
2 C, that  can be used to compress both rule number 
and rule width . Two methods undertaking an 
expansion factor of one but have potentially larger 
rule widths. The third method has the best rule width 
compression at the cost of expansion factors larger 
than one. Bremmel-Bar et al. [26] purpose concrete 
algorithms for the P 2 C hierarchy. Pao et al. 
proposed a prefix inclusion method (PIC) that 
achieves better rule width compression than P 2 C 
[27], [28]. Che et al. [6], [23] and Pao et al. [27], [28] 
propose using TCAMs to re encode packets.  
software based packet classification using 
Reencoding.  Lakshman and Stiliadis proposed to 
reencode each field’s value into a bitmap that 
specifies the repression  relationship among values 
and rules [30].  

 
Given a  reencoded packet, this method uses 

customized parallel AND gates to  perform an 
connection of these bitmaps and ultimately find the 
first matching rule. Srinivasan et al. proposed an 
encoding method called cross-producting that assigns 
a single number  to each disjoint range contained by  

 
a classifier field and constructs a  look up table for 
the cross product of the numbers associated  with 
each field [14]. Gupta and McKeown proposed 
Recursive  Flow Classification (RFC) [31], an 
optimized report of the  cross-producting scheme that 
uses recursive cross-producting tables to reduce the 
space rations of regular cross  producting tables. 
Furthermore, they map disjoint ranges that are 
contained by the same set of rules into a single value. 
RFC’s mapping tables use a weaker equivalence 
relation than Our domain compression technique, so 
they do not achieve As much compression as we do. 
Unfortunately, this software 
Based re encoding methods are hard to deploy 
because the  Required RAM to perform the re 
encoding is extremely large. By using TCAMs to 
achieve re encoding, we conquer this 
 memory issue. 
 
2.4 TCAM Rule Sets 

First-match TCAM research is to find multi-
match results, we require to proof intersections 
between rules. Studies in [17] show that the number 
of intersections between real-world rules is 
drastically smaller than the theoretical upper bound 
since each field has a limited number of values (e.g., 
all known port numbers) as a substitute of 
unconstrained random values. So keeping all the 
intersection rules is possible. Indices of all those 
rules that used to create the intersection are stored in 
a list. SRAM is used to store the list and we call this 
as a “Match List”. We first do a TCAM lookup in a 
given packet and then use the matching index to 
recover all matching results with a secondary SRAM 
lookup as shown in Figure 2. The extended rule set is 
formed by extended rules plus the original rules. The 
objects in the match list are the indices of rules in the 
original rule set. As defined in Section 2, the TCAM 
compatible order entails rules to be ordered so that 
the first match should record all the matching results 
in the match list. We first list the relationships 
between any two different rules Ei and Ej, with match 
list Mi and Mj. Exclusive, subset, superset, and 
intersection, are the four cases with following related 
requirements:  
1. Exclusive (Ei ∩Ej,=φ ): then i and j can have any 
order.  
2. Subset (Ei ⊆El): then i<j and Mj ⊆Mi . 
3. Superset (Ej ⊂El): then j<i and Mi ⊆Mj . 
4. Intersection (Ei ∩Ej ≠φ ): then there is a rule El = 
(Ei ∩Ej) (l<i, l<j), and (Mi ∪Mj ) ⊆Ml. 
 

Case 1 is trivial: if Ei and Ej are disjoint, Ei 
never matches Ej in every packet matching if they 
may be in any order. For Case 2 where Ei is a subset 
of Ej, Ei will match Ej in every packet matching as 
well, so Ei should be put before Ej and match list Mi 
should include Mj. In this way, packets first matching  
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Ei will not miss matching Ej. Similar 

operations are required for Case 3. Besides these 
three cases, partially overlapping rules lead to Case 
4. In this case, we need a new rule El recording the 
intersection of these two rules (Ei ∩Ej) placed before 
both Ei and Ej with both match results included in its 
match list (Mi ∪Mj) ⊆Ml). Note that the intersection 
of Ei and Ej may be further divided into smaller 
regions by other rules (e.g., Ek in Figure 3). In this 
case, all the smaller regions (Ei ∩Ej and Ei ∩Ej ∩Ek ) 
have to be presented before both Ei and El. This can 
actually be deduced by requirement (4). 
 
 
 
 
 
 
 
 
 
 
  
. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2:Example of intersection of three rules 
 
 

Case 1 to 4 covers all the feasible 
relationships between any two rules. By applying the 
corresponding operations talked above, we can meet 
the requirements and get a TCAM compatible order.  
_____________________________________ 
Extend_rule_set(R){ 
E=φ ; 
For all the rule Ri in R 
E=Insert(Ri, E); 
return E; 
} 
Insert(x, E){ 
for all the rule Ei in E { 
Switch the relationship between Ei and x: 
Case exclusive: 
continue; 
Case subset: 
Mi = Mx ∪Mi; 
continue; 
Case superset: 

Mx = Mx ∪Mi; 
add x before Ei ; 
return E; 
Case intersection: 
If (Ei ∩x∉E and Mx ⊄Mi) 
add t = Ei ∩x before Ei ; 
Mt= Mx ∪Mi 
} 
add x at the end of E and return E; 
} 

Figure 3: TCAM compatible order code. 
 

Figure 3 is the pseudo-code for creating a 
TCAM compatible order. The algorithm gets the 
original rule set R={R1, R2, …., Rn} as the input. Each 
rule Ri is associated with a match list, which is index 
of itself ({i}). The algorithm will output an extended 
rule set E in the TCAM compatible order. The 
algorithm inserts one rule at a time into the extended 
rule set E, which is originally empty (the empty set 
obviously follows the requirements of TCAM 
compatible order). Next, we will show that after each 
insertion, E still meets the requirements. Insert(x, E) 
is the routine to insert rule x into E. It scans every 
rule Ei in E and checks the relationship between Ei 
and x. If they are exclusive, then we can bypass Ei. If 
Ei  is a subset of x, we just add match list Mx to Mi 
and proceed to the next rule. If Ei is a superset of x, 
we should add x before Ei according to requirement 
(3) and ignore all the rules after Ei (see the proof in 
the appendix).  

 
Otherwise, if they intersect, then according 

to requirement (4), a new rule Ei ∩x needs to be 
inserted before Ei if it is not presented before. The 
match list for the new rule is Mx ∪Mi. As you can 
see, we strictly trail the four requirements when 
adding every new rule, so the generated extended 
rule set E is in the TCAM compatible order. Due to 
space limitations, we do not go into the details of the 
deletion algorithm. To better show the algorithm, 
let’s look at the following example in Table 1 which 
contains three rules. To generate extended rule set E, 
first we insert rule 1. Rule 2 does not intersect with 
rule 1 so it can be added directly. Now, we have rule 
1 followed by rule 2. When inserting rule 3, we find 
that it intersects with both rule 1 and rule 2, so we 
add two intersection rules with match list {1, 3} and 
{2, 3} and put rule 3 at the bottom of the TCAM. 
The final extended rule set E is presented in Table 2. 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Ei 

Ek∩Ej Ej Ej ∩Ei Ej ∩Ei∩Ek 
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Table1 : Example of original rules et with 3 rules 
 

S.No Original rules sets 

1 Tep $SQL_SERVER 
1433→$EXTERNAL_NET any 

2 Tep $EXTERNAL_NET 119→ 
$HOME_NET Any 

3 Tep Any Any → Any 139 

 
 

Table 2  : Extended rule set in the TCAM 
compatible order 

 
 
2.5  Deleting Negation  

The scheme there can be used to generate a 
set of rules in the TCAM compatible order. In this 
section, describe how to  insert them into TCAM. 
Each cell in the TCAM can take one of three states: 
0, 1 or ‘do not care’. Hence, each rule needs to be 
represented by these three states.  Generally, a rule 
includes IP addresses, port information, protocol 
type, etc. IP addresses in the CIDR form can be 
represented in the TCAM using the ‘do not care’ 
state. On the other hand, the port number may be 
selected from an arbitrary range. Liu[34] has 
projected a scheme to competently solve port range 
problem, so that will not discuss  for  further.. A 
more difficult problem for the TCAM is that various 
IP and port information is in a negation form. As 
explained in Section 2, each negation consumes 
many TCAM entries, so in this section, our aim is to 
take out negation from the rule set to save TCAM 
space.  
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

Let us first look at the groupings of source 
and destination IP address spaces as shown in Figure 
5 before we present our scheme. Use the rule set in 
Table 1 as an example, rule 3 applies to all 4 regions 
since it is “any” source to “any” destination; rule 1 
applies to region D because we think 
$SQL_SERVER is in side $HOME_NET; and rule 2 
applies to region A. The regions that contain 
negation ($EXTERNAL_NET) are region A 
($EXTER-NAL_ NET to $HOME_NET), B 
($HOME_NET to $EXTER-NAL_NET), and D 
($EXTERNAL_NET to $EXTERNAL_NET).  
Consider region A as an example: the rules in this 
region are in the form of “* $EXTERNAL_NET * 
→$HOME_NET + *” . Note that * means it could be 
anything (e.g. “tcp” or “any” or a specific value). 
$HOME_NET + stands for $HOME_NET and any 
subset of it such as $SQL_SERVER. If we can 
extend rules in region A to region A and C, we can 
swap $EXTERNAL_NET with keyword “any” and 
now rules are in the format of “* any * 
→$HOME_NET + *”. however, after extending the 
region, we change the semantics of the rule and this 
may concern packets in region C. In another word, 
packet “* $HOME_NET * → $HOME_NET + *” 
will report a match of this rule as well. This problem, 
however, is solvable because TCAM only informs 
the first matching result. With this property, we can 
first take out all the rules applying to region C and 
put those rules at the top of TCAM. Next, we add a 
separator rule between region C and region A: “any 
$HOME_NET any →$HOME_NET any” with an 
empty action list. In this way, all the packets in 
region C will be matched first and  thus ignore all the 
rules afterwards. With this separator rule, we can 
now extend all the rules in region A to region A and 
C. Similarly, rules in region D can be extended to 
region C and D, rules in region B can be extended to 
region A, B, C, D. Therefore, we will put all the rules 
in the following order: 
Rules in region C: “* $HOME_NET + * 
→$HOME_NET + *” . 
 

Match List Extended Rules 

1.3 Tep $SQL_SERVER 
1433→$EXTERNAL_NET 
139 

1 Tep $SQL_SERVER 
1433→$EXTERNAL_NET 
any 

2.3 Tep $EXTERNAL_NET 
119→ $HOME_NET 139 

2 Tep $EXTERNAL_NET 
119→ $HOME_NET Any 

3 Tep Any Any → Any 139 
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Table 3.Extended rule set in a TCAM with no 
negation 

 
Separator rule 1: “any $HOME_NET any 
→$HOME_NET any” . 
 
Rules in region D, specified in the form of region C 
and D: 
“* $HOME_NET + * →any *”  . 
Rules in region A, specified in the form of region A 
and C: “* any * →$HOME_NET + *”. 
Separator rule 2: “any $HOME_NET any →any 
any” . 
Separator rule 3: “any any any →$HOME_NET 
any” 
Rules applying to region B, particular in the form of 
region A, B, C and D: “* any * →any *” 
Putting extended rule sets in the above order can be 
simply attained by first adding all three separator 
rules to the initiating of the original rule set, then 
following the algorithm in section 2. If a rule applies 
to regions A, it will frequently intersect with the 
separator 1 and generate a rule in region C. If a rule 
applies region B, then it will intersect with all three 
separators and create  

Table 4:SNORT rule headers statistics. 

 
three intersection rules. After that, we can replace all 
the $EX-TERNAL_ NET with keyword “any”. 
Table 3 illustrates  the result of mapping the rule set 
of Table 1into TACM. The first rule in region C is 
extracted from rule 3 that concerns  to all four 
regions. The second rule is a separator rule. With 
these two rules, we can swap the 

$EXTERNAL_NET in rules 3-6 with keyword 
“any”. At the end, there is rule 7 which applies to all 
the regions. Separator rules 2 and 3 are absent 
because no rule is in the form of $EXTERNAL_NET 
to $EXTER-NAL_NET in the original rule set. In 
this example, by adding only two rules, we can 
totally remove the $EXTERNAL_NET. Compared to 
the solution in table 2 which needs up to 4*32 +1 
=129 TCAM entries, table 2 which needs up to 4*32 
+1 =129 TCAM entries, it is 94.5% of space saving! 
The above example is a particular case because there 
is only one type of negation EXTERNAL_NET) in 
one field. In a more general case, there can be other 
than one negation in each field. For example, there 
could be both  !80 and !90 or !subnet1 and !subnet2 
in the same field. Our method can be easily extended. 
If there are k unique negations in one field and their 
non-negation forms do not overlap (e.g., 80 and 90), 
then we need k separators of the non-negation form 
(80, 90) and they can be in any order. If they 
intersect, then we need up to 2 k -1 separation rules 
for this field. For instance, suppose there are   
!subnet1 and  !subnet2, there should be three 
separation rules applying to subnet1 ∩subnet2,  
subnet2,  and subnet1. k is usually a very small 
number because it is limited by a number of stared 
subnet. 

Table 5:Statistics of extended ruleset in TCAM 
compatible order. 

 
In general, if each field I needs ki separators, 

then at most of .+1 - 1)) (k ( i separator rules should 
be added. In our earlier example of removing 
$EXTER-NAL_NET from source and destination IP 
addresses, k1= k1=1, so we need a total of 2*2-1=3 
separator rules. 
 
III.  SIMULATION RESULTS 

 SNORT [2] rule set is used to test the 
impression of our algorithm. The SNORT rule set 
has undergone important changes since 1999. We 
experienced all the versions after 2.0 that are publicly 
available. Although each rule set has around 1700-
2000 rules, several of the rules share a common rule 
header.  Note that we omitted the versions that share 
the same rule headers with the previous version. Our 
mission is to put these rule headers into TCAM as 
classification rules, and collect the identical   

TCAM 
Index 

TCAM entries Match 
list 

1 tcp $HOME_NET any 
→$HOME_NET  139 

3 

2 any $HOME_NET any 
→$HOME_NET  any 

 

3 tcp $ SQL_SERVER 
1433→ any 139 

3,1 

4 tcp $ SQL_SERVER 
1433→ any any 

1 

5 tcp  any 119 
→$HOME_NET  139 

2,3 

6 tcp $HOME_NET any 
→$HOME_NET  any 

2 

7 tcp  any any → any  139 3 

 Release 
Date 

Rule 
SetSize 

Rules 
added 

Rules 
delete
d 

2.0.0 4/14/2003 240 - - 
2.0.1 7/22/2003 255 21 6 
2.1.0 12/18/2003 257 3 1 
2.1.1 2/25/2004 263 6 0 

Versio
n 

#  of rules 
in extended  
set 

Single 
negati
on 

Double 
Negati
ons 

Triple 
Negati
ons 

2.0.0 3,693 62.334
% 

0.975% 0 

2.0.1 4,009 62.484
% 

1.422% 0.025
% 

2.1.0 4,015 62.540
% 

1.420% 0.025
% 

2.1.1 4,330 62.332
% 

1.363% 0.023
% 
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matching rule indices in the match list. Hence, given 
an incoming packet, with one TCAM lookup and 
another SRAM lookup, we can execute multi-match 
packet classification. The  second column in Table 5 
records the size of extended rule set in the TCAM 
compatible order. It is nearly 10 times the size of the 
original rule set, which is well below the theoretical 
upper bound. This agrees with the findings in 
[17,32,33]. 
 

The number of negations in the extended 
rule set is important. As shown in Table 5, on 
average 62.4% of the rules have one negation, 
1.295% of the rules have two negations and there are 
even rules with three negations. In our 
representation, we assume home network is a class C 
address that has a 24 bit prefix, so each 
$EXTERNAL_NET needs 24 TCAM entries. 
Negation of port, e.g., !80, !21:23  uses 16 TCAM 
entries. In this setting, a single negation takes up to 
24 TCAM entries; a double negation consumes up to 
24*24=576 TCAM entries; and a triple negation 
requires up to 24*24*16=9216 TCAM entries. 
Therefore, if we directly put all the rules with 
negation into the TCAM, it takes up to 151,923 
TCAM entries as shown in the third column of Table 
6. Our negation removing scheme in Section 3 can 
notably save TCAM space. For the SNORT rule 
header set, we added 2*3*2*2-1 = 23 separation 
rules in front of the original rule set because there are 
four types of negations: $EXTERNAL_NET at 
source IP, $EXTERNAL_NET at destination IP, 
!21:23 and !80 at source port, and !80 at destination 
port. It only adds about 10% extra rules in the 
extended rule set (4 th column of Table 6). However, 
with this 10% more rules, we can decrease the 
number of TCAM entries require d by over 93%.  
Note that the total number of required TCAM entries 
is superior than the extended rule set size. This is 
because some rules have port ranges and consume 
extra TCAM entries. The range mapping approach in 
[34] is not used because this approach requires  Two 
extra memory lookups for key translations, and 
classification speed is our main concern. If a lower 
speed is acceptable, then we can also include the 
range mapping technique and the total TCAM entries 
needed is just the size of extended rule set after  
removing negations. Each rule is 104 bits (8 bits 
protocol id, 2 ports with 16 bits each, 2 IP addresses 
with 32 bits each), which can be rounded up to use a 
128 bits entry TCAM. The total TCAM space wanted 
for SNORT rule header set is 128*8649=135KB. To 
study the effect of negation, we randomly show a 
discrepancy the negation percentages in the original 
rule set. In the SNORT original rule header sets, 
89.7% of rules contain single negation and 1.1% of 
the rules contain double negation. So, we first 
spotlight on the effect of single negation. Figure 6  

 
 
shows the TCAM space needed both with and 
without our negation removing scheme.,  
 

The two schemes perform closely , when the 
percentage of negation is very low . If we study 
closely, when the negation percentage is very small 
(<2%), putting negation directly is better than our 
scheme while we introduce extra separation rules that 
may intersect with other rules. However, as the 
percentage of negation is advanced, the TCAM space 
needed for “with negation” case grows very fast. In 
distinguish the curve of our scheme remains flat and 
thus can save a huge number of TCAM space. For 
example, when 98% of the convention involve 
negation, our scheme can save 95.2% of the TCAM  
space compared to the “with negation” case. This is 
only for the single negation case. Due to space 
margins, we do not present result for double negation 
cases. However, we can make up that the saving 
would be even higher since each double negation 
rule requires more TCAM entries. 

 
IV. CONCLUSION: 

It is relatively simple to perform packet 
classification at high speed using large amount of 
storage or low speed at small amount of memory. In 
this paper we have classified  there are two 
techniques prefix alignment techniques and  multi 
prefix  alignment techniques and consider TCAM re-
encoding process has been inducted here. These 
techniques not only multiple composable and also 
prefix alignment optimization and create re-encoding 
scheme. We have implemented our algorithm and 
conducted extensive experiments and both real-time 
and multi packet classifiers. The experiment result 
shows that our techniques achieve 6.74 times more 
space reductions with transformers. 
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