
International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

9

An innovative approach of packet classification based on

TCAM

1R.Jayanthi 2 J.Lakshmikanth 3 V.Geethapriya
1Sankara Deemed University, Kanchipuram, jayanthiravi96@gmail.com

2St Peter’s University, Avadi, lakshmikanth_sai@yahoo.co.in
3St Peter’s University, Avadi , vgeetha87@rediffmail.com

Abstract
 Multiple range of re encoding scheme have
been proposed to enhance the effect of large range
expansion and increase high capacity and large
efficient power consumption and low heat
generation of ternary content addressable
memory based on the packet classification
unfortunately we can have optimally solve the one
dimensional problems and made complex
interaction between dimensions and complicated
multidimensional problems especially the total
range of expansions required for each rule and
each field is the product of range expansion.
Therefore in this paper we have to be
implemented multiple prefix alignment for solve
the complicated multidimensional problem. This
multidimensional prefix alignment problems
potentially combination of the new techniques
with TCAM optimization and re encoding
scheme. The simulation result that our technique
achieve at least 10 times more space reduction in
case of TCAM space for an encoded classifier and
its transformers that leads to improved
throughput complexity and decreased power
consumption.

Index Terms

Ternary content addressable memory,
range reencoding,space reduction, classifier.

I. INTRODUCTION

Packet classification require a number of
network services for instance routing, access-control
in firewalls, policy based routing, provision of
differentiated qualities of service, and traffic billing.
In every case, it is required to decide the flow of
arriving packet then conclude whether the packet is
going to forward or filter. If it is forward, identify the
set of service it should receive, or how much should
be charged for transporting it. The tagging purpose is
performed by a flow classifier (also called a packet
classifier).Packet classifier maintains a set of rules,
where all packet flow obeys at least one rule. The
rules order Packet flow belongs to based on the
packet header(s). For example, source and
destination IP address values, and particular transport

port numbers define the packet flow. Otherwise a
flow could be basically defined by a destination
prefix and a range of port values. As we shall see, in
practice a number of different types of rules are used.
This paper describes a technique for fast packet
classification based on an about uninformed set of
rules. We focus now only on the difficulty of
identifying the class to which a packet belongs. The
actions taken for each class (e.g. packet scheduling
in an output queue, routing decisions, billing
[2][3][4][8][11][12][13]) while attractive in its own
right, is not the topic of this paper. The most
eminent form of packet classification is used to
route IP data grams. In this case, all of the packets
intended to the set of addresses described by a
common prefix may be considered to be part of the
same flow. In the lead arrival to a router, each
packet header is examined to conclude the Network-
layer destination address, which identifies the flow to
which the packet belongs.

Awaiting recently, longest-prefix matching
for routing look ups could not be done at high
speeds. Now that several fast routing look up
algorithms have been developed, attention has turned
to the wide-ranging problem of packet classification.

Figure1: Example network of an ISP (ISP1)
connected to two enterprise networks(E1 and E2)

and to two other ISP networks across NAP.

IS
P2

IS
P3

N
A

 X

Y

E1

E2

Ro
ute

Z

mailto:jayanthiravi96@gmail.com

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

10

 Figure 1 shows ISP1 connected to three different
sites: two enterprise networks E1 and E2 and a
Network Access Point (NAP) which is in
 turn joined to ISP2 and ISP3. ISP1 provides a number
of dissimilar services to its customers, as shown in
Table 1.

Table 2 shows the categories or classes that the

router at interface X should classify an incoming
packet into. The classes specified may or may not be
mutually exclusive must be noticed(i.e. they may be
overlapping or non-overlapping), for example the
first and second class in Table 2 overlap. When
overlapping happens, we will go after the principle,
in which rules closer to the top of the list take
priority, with the default rule appearing last.

1.1 The Problem of Packet Classification

Packet classifier is used to perform the Packet

classification, is furthermore called a policy
database, flow classifier, or simply a classifier. A
classifier is nothing a collection of rules or policies.
A class specified by each rule that a packet may
belong to based on some standard on F fields of the
packet header, and connections with every class an
identifier, classID. The action associated with the
rule is uniquely specified by the this classID
identifier . All rule has

F components. The ith component of rule R, referred
to as R[i], is a regular expression on the ith field of
the packet header (in practice, the regular expression
is restricted by syntax to a simple address/mask or
operator/number(s) specification). A packet P is said
to equal a particular rule R, if ∀i , the ith field of
the header of P satisfies the regular expression R[i].
It is suitable to think of a rule R as the set of all
packet headers which could match R. When viewed
in this method, two distinct rules are said to be either
partially overlapping or non-overlapping, or that one
is a subset of the other, with parallel set-related
definitions. When two rules are not mutually
exclusive will be assumed throughout in this
paper.The tidy in which they appear in the classifier
will determine their relative priority. We have to
identify the whole forwarding table in a packet
classifier is specified by , a packet classifier that
performs longest-prefix address look ups, each
destination prefix is a rule, the related next hop is its
action, the pointer to the next-hop is the associated
class ID. If we presume that the forwarding table has
longer prefixes appearing before shorter ones, the
look up is an example of the packet classification
problem.

II. RELATED WORK

Preceding work in optimizing T CAM-based
packet classification systems plunge into three broad
categories: circuit modification, classifier
compression, and range re encoding.

 2.1 Circuit Updation

Spitznagel et al. proposed adding
comparators at each entry level to better
accommodate range matching [14]. While this
research direction is important, such solutions are
hard to install due to high cost [6].

2.2 Compressed Classification

These optimizations convert a given packet
classifier to another semantically equivalent classifier
that requires fewer TCAM entries. The schemes in
[10], [15], [25] focus on one-dimensional and two
dimensional packet classifiers. The redundancy
removal algorithms in [19] can shrink TCAM usage
by eliminating all the redundant rules in a packet
classifier. In [18], Dong et al. proposed schemes to
reduce range expansion by frequently expanding or
trimming ranges to prefix boundaries without
changing the number of bits used to represent each
dimension. They confirm correctness by using core
effective region algorithms in [19]. In concentrate,
they insert the new rule before the rule being
modified and check if the new rule is redundant. In
dissimilarity, our prefix alignment algorithm
mitigates range expansion by intelligently adding bits

Service Example
Packet Filtering Den all traffic from ISP3

(on interface X) destined to
E2

Policy Routing Send all voice-over-IP
traffic arriving from E1 (on
interface Y) and destined to
E2 via a separate ATM
network

Accounting &
Billing

Treat all video traffic to E1
(via interface Y) as highest
priority and perform
accounting for the traffic
sent this way.

Traffic Rate
Limiting

Ensure that ISP2 does not
inject more than 10Mbps of
email traffic and 50Mbps of
totaltraffic on interface X.

Traffic Shaping Ensure that no more than
50Mbps of web traffic is
injected into ISP2 on
interface X.

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

11

to a given dimension to increase the number of
prefix boundaries. In [20] Meiners, et al. proposed
finding locally minimal solutions by using greedy
algorithm that along each field and combines these
solutions into a smaller equivalent packet classifier.
In [21], Meiners et al. proposed the first algorithm
that can reduce a given classifier into a non-prefix
ternary classifier.

2.3 Re encoded of Ranges

Prior range re encoding schemes falls into
two categories:
i) Range re encoding that only consider rule set size,
often at the expense of rule width [22], [23], [24],
[25] and
ii) Range re encoding that attempt to both compress
rule set size and rule width [26], [27], [28],[29]. In
[24], Liu proposed a method that allocates specific
TCAM column bits to represent ranges in a manner
like to Lakshman and Stiliadis’ software bitmap
classification method [6]. Lakshminarayan et al. [30]
proposed a scheme called fence encoding, which
encodes interval ranges as a range of unary numbers.
Fence encoding has an growth factor of one, meaning
all ranges can be encoded with one string, but the
number of unary bits required for each rule is
affordable.

To reduce rule width, Lakshminarayan et,al.
proposed DIRPE, which compresses the width of
fence encodings at the expense of a larger expansion
factor. Bremler- Barr and Hendler [22] proposed
SRGE, which utilizes the structural properties of
binary reflected gray codes to shrink range expansion
without increasing rule width. Lunteren and
Engbersen proposed a hierarchy of three methods, P
2 C, that can be used to compress both rule number
and rule width . Two methods undertaking an
expansion factor of one but have potentially larger
rule widths. The third method has the best rule width
compression at the cost of expansion factors larger
than one. Bremmel-Bar et al. [26] purpose concrete
algorithms for the P 2 C hierarchy. Pao et al.
proposed a prefix inclusion method (PIC) that
achieves better rule width compression than P 2 C
[27], [28]. Che et al. [6], [23] and Pao et al. [27], [28]
propose using TCAMs to re encode packets.
software based packet classification using
Reencoding. Lakshman and Stiliadis proposed to
reencode each field’s value into a bitmap that
specifies the repression relationship among values
and rules [30].

Given a reencoded packet, this method uses

customized parallel AND gates to perform an
connection of these bitmaps and ultimately find the
first matching rule. Srinivasan et al. proposed an
encoding method called cross-producting that assigns
a single number to each disjoint range contained by

a classifier field and constructs a look up table for
the cross product of the numbers associated with
each field [14]. Gupta and McKeown proposed
Recursive Flow Classification (RFC) [31], an
optimized report of the cross-producting scheme that
uses recursive cross-producting tables to reduce the
space rations of regular cross producting tables.
Furthermore, they map disjoint ranges that are
contained by the same set of rules into a single value.
RFC’s mapping tables use a weaker equivalence
relation than Our domain compression technique, so
they do not achieve As much compression as we do.
Unfortunately, this software
Based re encoding methods are hard to deploy
because the Required RAM to perform the re
encoding is extremely large. By using TCAMs to
achieve re encoding, we conquer this
 memory issue.

2.4 TCAM Rule Sets

First-match TCAM research is to find multi-
match results, we require to proof intersections
between rules. Studies in [17] show that the number
of intersections between real-world rules is
drastically smaller than the theoretical upper bound
since each field has a limited number of values (e.g.,
all known port numbers) as a substitute of
unconstrained random values. So keeping all the
intersection rules is possible. Indices of all those
rules that used to create the intersection are stored in
a list. SRAM is used to store the list and we call this
as a “Match List”. We first do a TCAM lookup in a
given packet and then use the matching index to
recover all matching results with a secondary SRAM
lookup as shown in Figure 2. The extended rule set is
formed by extended rules plus the original rules. The
objects in the match list are the indices of rules in the
original rule set. As defined in Section 2, the TCAM
compatible order entails rules to be ordered so that
the first match should record all the matching results
in the match list. We first list the relationships
between any two different rules Ei and Ej, with match
list Mi and Mj. Exclusive, subset, superset, and
intersection, are the four cases with following related
requirements:
1. Exclusive (Ei ∩Ej,=φ): then i and j can have any
order.
2. Subset (Ei ⊆El): then i<j and Mj ⊆Mi .
3. Superset (Ej ⊂El): then j<i and Mi ⊆Mj .
4. Intersection (Ei ∩Ej ≠φ): then there is a rule El =
(Ei ∩Ej) (l<i, l<j), and (Mi ∪Mj) ⊆Ml.

Case 1 is trivial: if Ei and Ej are disjoint, Ei
never matches Ej in every packet matching if they
may be in any order. For Case 2 where Ei is a subset
of Ej, Ei will match Ej in every packet matching as
well, so Ei should be put before Ej and match list Mi
should include Mj. In this way, packets first matching

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

12

Ei will not miss matching Ej. Similar

operations are required for Case 3. Besides these
three cases, partially overlapping rules lead to Case
4. In this case, we need a new rule El recording the
intersection of these two rules (Ei ∩Ej) placed before
both Ei and Ej with both match results included in its
match list (Mi ∪Mj) ⊆Ml). Note that the intersection
of Ei and Ej may be further divided into smaller
regions by other rules (e.g., Ek in Figure 3). In this
case, all the smaller regions (Ei ∩Ej and Ei ∩Ej ∩Ek)
have to be presented before both Ei and El. This can
actually be deduced by requirement (4).

.

Figure 2:Example of intersection of three rules

Case 1 to 4 covers all the feasible
relationships between any two rules. By applying the
corresponding operations talked above, we can meet
the requirements and get a TCAM compatible order.

Extend_rule_set(R){
E=φ ;
For all the rule Ri in R
E=Insert(Ri, E);
return E;
}
Insert(x, E){
for all the rule Ei in E {
Switch the relationship between Ei and x:
Case exclusive:
continue;
Case subset:
Mi = Mx ∪Mi;
continue;
Case superset:

Mx = Mx ∪Mi;
add x before Ei ;
return E;
Case intersection:
If (Ei ∩x∉E and Mx ⊄Mi)
add t = Ei ∩x before Ei ;
Mt= Mx ∪Mi
}
add x at the end of E and return E;
}

Figure 3: TCAM compatible order code.

Figure 3 is the pseudo-code for creating a
TCAM compatible order. The algorithm gets the
original rule set R={R1, R2, …., Rn} as the input. Each
rule Ri is associated with a match list, which is index
of itself ({i}). The algorithm will output an extended
rule set E in the TCAM compatible order. The
algorithm inserts one rule at a time into the extended
rule set E, which is originally empty (the empty set
obviously follows the requirements of TCAM
compatible order). Next, we will show that after each
insertion, E still meets the requirements. Insert(x, E)
is the routine to insert rule x into E. It scans every
rule Ei in E and checks the relationship between Ei
and x. If they are exclusive, then we can bypass Ei. If
Ei is a subset of x, we just add match list Mx to Mi
and proceed to the next rule. If Ei is a superset of x,
we should add x before Ei according to requirement
(3) and ignore all the rules after Ei (see the proof in
the appendix).

Otherwise, if they intersect, then according

to requirement (4), a new rule Ei ∩x needs to be
inserted before Ei if it is not presented before. The
match list for the new rule is Mx ∪Mi. As you can
see, we strictly trail the four requirements when
adding every new rule, so the generated extended
rule set E is in the TCAM compatible order. Due to
space limitations, we do not go into the details of the
deletion algorithm. To better show the algorithm,
let’s look at the following example in Table 1 which
contains three rules. To generate extended rule set E,
first we insert rule 1. Rule 2 does not intersect with
rule 1 so it can be added directly. Now, we have rule
1 followed by rule 2. When inserting rule 3, we find
that it intersects with both rule 1 and rule 2, so we
add two intersection rules with match list {1, 3} and
{2, 3} and put rule 3 at the bottom of the TCAM.
The final extended rule set E is presented in Table 2.

Ei

Ek∩Ej Ej Ej ∩Ei Ej ∩Ei∩Ek

Ej

Ei

Ek

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

13

Table1 : Example of original rules et with 3 rules

S.No Original rules sets

1 Tep $SQL_SERVER
1433→$EXTERNAL_NET any

2 Tep $EXTERNAL_NET 119→
$HOME_NET Any

3 Tep Any Any → Any 139

Table 2 : Extended rule set in the TCAM
compatible order

2.5 Deleting Negation

The scheme there can be used to generate a
set of rules in the TCAM compatible order. In this
section, describe how to insert them into TCAM.
Each cell in the TCAM can take one of three states:
0, 1 or ‘do not care’. Hence, each rule needs to be
represented by these three states. Generally, a rule
includes IP addresses, port information, protocol
type, etc. IP addresses in the CIDR form can be
represented in the TCAM using the ‘do not care’
state. On the other hand, the port number may be
selected from an arbitrary range. Liu[34] has
projected a scheme to competently solve port range
problem, so that will not discuss for further.. A
more difficult problem for the TCAM is that various
IP and port information is in a negation form. As
explained in Section 2, each negation consumes
many TCAM entries, so in this section, our aim is to
take out negation from the rule set to save TCAM
space.

Let us first look at the groupings of source
and destination IP address spaces as shown in Figure
5 before we present our scheme. Use the rule set in
Table 1 as an example, rule 3 applies to all 4 regions
since it is “any” source to “any” destination; rule 1
applies to region D because we think
$SQL_SERVER is in side $HOME_NET; and rule 2
applies to region A. The regions that contain
negation ($EXTERNAL_NET) are region A
($EXTER-NAL_ NET to $HOME_NET), B
($HOME_NET to $EXTER-NAL_NET), and D
($EXTERNAL_NET to $EXTERNAL_NET).
Consider region A as an example: the rules in this
region are in the form of “* $EXTERNAL_NET *
→$HOME_NET + *” . Note that * means it could be
anything (e.g. “tcp” or “any” or a specific value).
$HOME_NET + stands for $HOME_NET and any
subset of it such as $SQL_SERVER. If we can
extend rules in region A to region A and C, we can
swap $EXTERNAL_NET with keyword “any” and
now rules are in the format of “* any *
→$HOME_NET + *”. however, after extending the
region, we change the semantics of the rule and this
may concern packets in region C. In another word,
packet “* $HOME_NET * → $HOME_NET + *”
will report a match of this rule as well. This problem,
however, is solvable because TCAM only informs
the first matching result. With this property, we can
first take out all the rules applying to region C and
put those rules at the top of TCAM. Next, we add a
separator rule between region C and region A: “any
$HOME_NET any →$HOME_NET any” with an
empty action list. In this way, all the packets in
region C will be matched first and thus ignore all the
rules afterwards. With this separator rule, we can
now extend all the rules in region A to region A and
C. Similarly, rules in region D can be extended to
region C and D, rules in region B can be extended to
region A, B, C, D. Therefore, we will put all the rules
in the following order:
Rules in region C: “* $HOME_NET + *
→$HOME_NET + *” .

Match List Extended Rules

1.3 Tep $SQL_SERVER
1433→$EXTERNAL_NET
139

1 Tep $SQL_SERVER
1433→$EXTERNAL_NET
any

2.3 Tep $EXTERNAL_NET
119→ $HOME_NET 139

2 Tep $EXTERNAL_NET
119→ $HOME_NET Any

3 Tep Any Any → Any 139

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

14

Table 3.Extended rule set in a TCAM with no
negation

Separator rule 1: “any $HOME_NET any
→$HOME_NET any” .

Rules in region D, specified in the form of region C
and D:
“* $HOME_NET + * →any *” .
Rules in region A, specified in the form of region A
and C: “* any * →$HOME_NET + *”.
Separator rule 2: “any $HOME_NET any →any
any” .
Separator rule 3: “any any any →$HOME_NET
any”
Rules applying to region B, particular in the form of
region A, B, C and D: “* any * →any *”
Putting extended rule sets in the above order can be
simply attained by first adding all three separator
rules to the initiating of the original rule set, then
following the algorithm in section 2. If a rule applies
to regions A, it will frequently intersect with the
separator 1 and generate a rule in region C. If a rule
applies region B, then it will intersect with all three
separators and create

Table 4:SNORT rule headers statistics.

three intersection rules. After that, we can replace all
the $EX-TERNAL_ NET with keyword “any”.
Table 3 illustrates the result of mapping the rule set
of Table 1into TACM. The first rule in region C is
extracted from rule 3 that concerns to all four
regions. The second rule is a separator rule. With
these two rules, we can swap the

$EXTERNAL_NET in rules 3-6 with keyword
“any”. At the end, there is rule 7 which applies to all
the regions. Separator rules 2 and 3 are absent
because no rule is in the form of $EXTERNAL_NET
to $EXTER-NAL_NET in the original rule set. In
this example, by adding only two rules, we can
totally remove the $EXTERNAL_NET. Compared to
the solution in table 2 which needs up to 4*32 +1
=129 TCAM entries, table 2 which needs up to 4*32
+1 =129 TCAM entries, it is 94.5% of space saving!
The above example is a particular case because there
is only one type of negation EXTERNAL_NET) in
one field. In a more general case, there can be other
than one negation in each field. For example, there
could be both !80 and !90 or !subnet1 and !subnet2
in the same field. Our method can be easily extended.
If there are k unique negations in one field and their
non-negation forms do not overlap (e.g., 80 and 90),
then we need k separators of the non-negation form
(80, 90) and they can be in any order. If they
intersect, then we need up to 2 k -1 separation rules
for this field. For instance, suppose there are
!subnet1 and !subnet2, there should be three
separation rules applying to subnet1 ∩subnet2,
subnet2, and subnet1. k is usually a very small
number because it is limited by a number of stared
subnet.

Table 5:Statistics of extended ruleset in TCAM
compatible order.

In general, if each field I needs ki separators,

then at most of .+1 - 1)) (k (i separator rules should
be added. In our earlier example of removing
$EXTER-NAL_NET from source and destination IP
addresses, k1= k1=1, so we need a total of 2*2-1=3
separator rules.

III. SIMULATION RESULTS

 SNORT [2] rule set is used to test the
impression of our algorithm. The SNORT rule set
has undergone important changes since 1999. We
experienced all the versions after 2.0 that are publicly
available. Although each rule set has around 1700-
2000 rules, several of the rules share a common rule
header. Note that we omitted the versions that share
the same rule headers with the previous version. Our
mission is to put these rule headers into TCAM as
classification rules, and collect the identical

TCAM
Index

TCAM entries Match
list

1 tcp $HOME_NET any
→$HOME_NET 139

3

2 any $HOME_NET any
→$HOME_NET any

3 tcp $ SQL_SERVER
1433→ any 139

3,1

4 tcp $ SQL_SERVER
1433→ any any

1

5 tcp any 119
→$HOME_NET 139

2,3

6 tcp $HOME_NET any
→$HOME_NET any

2

7 tcp any any → any 139 3

 Release
Date

Rule
SetSize

Rules
added

Rules
delete
d

2.0.0 4/14/2003 240 - -
2.0.1 7/22/2003 255 21 6
2.1.0 12/18/2003 257 3 1
2.1.1 2/25/2004 263 6 0

Versio
n

of rules
in extended
set

Single
negati
on

Double
Negati
ons

Triple
Negati
ons

2.0.0 3,693 62.334
%

0.975% 0

2.0.1 4,009 62.484
%

1.422% 0.025
%

2.1.0 4,015 62.540
%

1.420% 0.025
%

2.1.1 4,330 62.332
%

1.363% 0.023
%

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

15

matching rule indices in the match list. Hence, given
an incoming packet, with one TCAM lookup and
another SRAM lookup, we can execute multi-match
packet classification. The second column in Table 5
records the size of extended rule set in the TCAM
compatible order. It is nearly 10 times the size of the
original rule set, which is well below the theoretical
upper bound. This agrees with the findings in
[17,32,33].

The number of negations in the extended
rule set is important. As shown in Table 5, on
average 62.4% of the rules have one negation,
1.295% of the rules have two negations and there are
even rules with three negations. In our
representation, we assume home network is a class C
address that has a 24 bit prefix, so each
$EXTERNAL_NET needs 24 TCAM entries.
Negation of port, e.g., !80, !21:23 uses 16 TCAM
entries. In this setting, a single negation takes up to
24 TCAM entries; a double negation consumes up to
24*24=576 TCAM entries; and a triple negation
requires up to 24*24*16=9216 TCAM entries.
Therefore, if we directly put all the rules with
negation into the TCAM, it takes up to 151,923
TCAM entries as shown in the third column of Table
6. Our negation removing scheme in Section 3 can
notably save TCAM space. For the SNORT rule
header set, we added 2*3*2*2-1 = 23 separation
rules in front of the original rule set because there are
four types of negations: $EXTERNAL_NET at
source IP, $EXTERNAL_NET at destination IP,
!21:23 and !80 at source port, and !80 at destination
port. It only adds about 10% extra rules in the
extended rule set (4 th column of Table 6). However,
with this 10% more rules, we can decrease the
number of TCAM entries require d by over 93%.
Note that the total number of required TCAM entries
is superior than the extended rule set size. This is
because some rules have port ranges and consume
extra TCAM entries. The range mapping approach in
[34] is not used because this approach requires Two
extra memory lookups for key translations, and
classification speed is our main concern. If a lower
speed is acceptable, then we can also include the
range mapping technique and the total TCAM entries
needed is just the size of extended rule set after
removing negations. Each rule is 104 bits (8 bits
protocol id, 2 ports with 16 bits each, 2 IP addresses
with 32 bits each), which can be rounded up to use a
128 bits entry TCAM. The total TCAM space wanted
for SNORT rule header set is 128*8649=135KB. To
study the effect of negation, we randomly show a
discrepancy the negation percentages in the original
rule set. In the SNORT original rule header sets,
89.7% of rules contain single negation and 1.1% of
the rules contain double negation. So, we first
spotlight on the effect of single negation. Figure 6

shows the TCAM space needed both with and
without our negation removing scheme.,

The two schemes perform closely , when the
percentage of negation is very low . If we study
closely, when the negation percentage is very small
(<2%), putting negation directly is better than our
scheme while we introduce extra separation rules that
may intersect with other rules. However, as the
percentage of negation is advanced, the TCAM space
needed for “with negation” case grows very fast. In
distinguish the curve of our scheme remains flat and
thus can save a huge number of TCAM space. For
example, when 98% of the convention involve
negation, our scheme can save 95.2% of the TCAM
space compared to the “with negation” case. This is
only for the single negation case. Due to space
margins, we do not present result for double negation
cases. However, we can make up that the saving
would be even higher since each double negation
rule requires more TCAM entries.

IV. CONCLUSION:

It is relatively simple to perform packet
classification at high speed using large amount of
storage or low speed at small amount of memory. In
this paper we have classified there are two
techniques prefix alignment techniques and multi
prefix alignment techniques and consider TCAM re-
encoding process has been inducted here. These
techniques not only multiple composable and also
prefix alignment optimization and create re-encoding
scheme. We have implemented our algorithm and
conducted extensive experiments and both real-time
and multi packet classifiers. The experiment result
shows that our techniques achieve 6.74 times more
space reductions with transformers.

REFERENCES
[1] A.Brodnik,S.Carlsson,M.Degermark,S.Pink.
“Small Forwarding Tables for Fast Routing
Lookups”,Proc.ACM SIGCOMM 1997,pp.3-
14,Cannes,France.

Snort
Versi
on

 With
Negation

Negation
removed

TCAM
Space
saved Extende

d
Rule set
size

TCAM
entries
needed

Exten
ded
Rule
set
size

TCA
M
entrie
s
neede
d

2.0.0 3,693 120,409 4,101 7,853 93.4%
2.0.1 4,009 145,208 4,411 8,124 94.4%
2.1.0 4,015 145,352 4,420 8,133 94.4%
2.1.1 4,330 151,923 4,797 8,649 94.3%

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

16

[2] Abhay K.Parekh and Robert G.Gallager,”A
generalized processor sharing approach to flow
control in integrated services networkes:The single
node case,”IEE/ACM Transactions on networking,
vol.1,pp.344-357,June 1993.
[3] Alan Demers, Srinivasan Keshav, and Scott
Shenker,“Analysis and simulation of a fair queueing
algorithm,” Internetworking: Research and
Experience, vol. 1, pp. 3-26, January 1990.
[4] Braden et al., “Resource Reservation Protocol
(RSVP) –Version 1 Functional Specification,” RFC
2205, September1997.

[5] B. Lampson, V. Srinivasan, and G. Varghese, "IP
lookups using multiway and multicolumn search," in
Proceedings of the Conference on Computer
Communications (IEEE INFOCOMM), (San
Francisco, California), vol. 3, pp. 1248-1256,
March/April 1998.
[6]K.Lakshminarayanan, A.Rangarajan and
S.Venkatachary,”Algorithms for advanced packet
classification with ternery CAMs,” in Proc.ACM
SIGCOMM, 1998, pp. 193 – 204.

[7] M. Waldvogel, G. Varghese, J. Turner, B.
Plattner. “Scalable High-Speed IP Routing
Lookups,” Proc. ACM SIGCOMM 1997, pp. 25-36,
Cannes, France.

[8] M. Shreedhar and G. Varghese, “Efficient Fair
Queuing Using Deficit Round-Robin,” IEEE/ACM
Transactions on Networking, vol. 4,3, pp. 375-385,
1996.

[9] P. Gupta, S. Lin, and N. McKeown, “Routing
lookups in hardware at memory access speeds,” in

Proceedings of the Conference on Computer
Communications (IEEE INFOCOMM), (San
Francisco, California), vol. 3, pp. 1241-1248,
March/April 1998.

[10]D.A.Applegate, G.Calinescu,
D.S.Johnson,H.Karloff,K.Ligett, and J.Wang,
”Compressing rectilinear pictures and minimizing
access control lists,” in Proc. ACM-SIAM SODA,
Jan. 2007, pp.1066-1075.

[11] R. Guerin, D. Williams, T. Przygienda, S.
Kamat, and A. Orda, “QoS routing mechanisms and
OSPF extensions,” Internet Draft, Internet
Engineering Task Force March 1998. Work in
progress.

[12] Richard Edell, Nick McKeown, and Pravin
Varaiya, “Billing Users and Pricing for TCP”, IEEE
JSAC Special Issue on Advances in the
Fundamentals of Networking, September 1995.

[13] Sally Floyd and Van Jacobson, “Random early
detection gateways for congestion avoidance,”
IEEE/ACM Transactions on Networking, vol. 1, pp.
397-413, August 1993.

[14] E.Spitznagel, D.Taylor, and J.Turner, “Packet
classification using Extended TCAMs,”in Proc.11th
IEEE ICNP,Nov.2003,pp.120-131.

[15]R.Draves, C.King,S.Venkatachary, and
B.Zill,”Constructing optimal IP Routing tables,” in
Proc.IEEE INFOCOM, 1999, pp. 88 – 97.

 [16] V.Srinivasan and G.Varghese, “Fast IP
Lookups using Controlled Prefix Expansion”, in
Proc. ACM Sigmetrics, June 1998.

[17]M.Kounavis, A.Kumar,HM Vin,R.Yavatkar, and
A.Campbell, “Directions in Packet Classification for
Network Processors,” NP2 Workshop, February
2003.

[18] Q.Dong, S.Banarjee, J.Wang, D.Agarwal and
A.Shukla,”Packet classifiers in ternary CAMs can be
smaller,”. In proc.ACM
SIGMANERICS,2006,pp.311-322.

[19]A.X.Liu and M.G.Gouda, “Diverse firewall
design,” in Proc.DSN,Jun.2004,pp.196-209.

[20]C.R.Meiners, A.X.Liu, and E.Torng, “TCAM
Razor:A Systematic approach towards minimizing
packet classifiers in TCAMs,” in Proc.15th IEEE
ICNP, Oct.2007,pp.266-275.

[21]]C.R.Meiners, A.X.Liu, and E.Torng, “Bit
weaving:A non-prefix approach to compressing
packet classifiers in TCAMs,”Dept.Computer
Sci.Eng.,Michigan State Univ.,East
Lansing,MI,Tech.Rep.MSU-CSE-09-1,Jan, 2009.

[22] A.Bremler-Barr, and, D.Hendler,”Space-
efficient TCAm-based classification using gray
coding,”in Proc.26th Annu. IEEE
INFOCOM,2007,pp.1388-1396.

[23] H. Che, Z. Wang, K. Zheng, and B. Liu,
“DRES; Dynamic range encoding scheme for TCAM
coprocessors,”IEEE Trans.Comput.,vol.57no.
7,pp.902-915, Jul. 2008.

[24] H.Liu,”Efficient mapping of range classifier into
ternary-Cam,”in proc.Hot Interconnects,2002,pp.95-
100.

International Journal of Power Control Signal and Computation (IJPCSC)
Vol. 5. No.1. pp.9-17,Jan-March 2013 ISSN: 0976-268X

www.ijcns.com

17

[25]K.Zheng,H.Che,Z.Wang,B.Liu, and
X.Zhang,”DPPC-RE:TCAM- based distributed
parallel packet classification with range encoding,”
IEEE Tran.Comput.,vol.55, no.8,pp.947-961,Aug
2006.

[26] A.Bremler-Barr, D. Hay, D.Hendler, and
R.Roth, “Layered interval codes for TCAM-based
classification,” in proc.IEEE
INFOCOM,2009,pp.1305-1313.
[27]D.Pao, Y.Li, and P.Zhou, “Efficient packet
classification using TCAMs,”Comput.Netw.,vol.50,
no. 18,pp.3523-3535,2006.
[28]D.Pao,P.Zhou,B.Liu, and X.Zhang , “Enhanced
prefix inclusion coding filter-encoding algorithm for
packet classification with ternary content addressable
memory,” Comput.Digital Tech., vol.1,no.5,pp.572-
580, Sep-2007.

[29]F.Yu,T.V.Lakshman, M.A.MOtoyama, and
R.H.Katz,”SSA:A power and memory efficient
scheme to multi-match packet classification,”in
proc.ANCS,Oct. 2005,pp.105-113.

[30]T.V.Lakshman and D.Stiliadis,”High Speed
policy-based packet forwarding using efficient multi-
dimensional range matching,” in proc.ACM
SIGCOMM, 1988, pp. 203-214.

[31]P.Gupta and N.Mckeown, “Packet classification
on multiple fields”,in proc.ACM SIGCOMM, 1999,
pp. 147-160.
[32]P.Gupta, N.McKeown “Packet Classification on
multiple fields,” in SIGCOMM, August 2003.
[33]S.Singh, F.Baboesu, G.Vargheese, and J.Wang,
“Packet Classification using Multidimensional
Cutting,”in SIGCOMM, September 1998

[34]P.Gupta, and N.McKeown, “Algorithms for
Packet Classification,” IEEE Network,March 2001.

