HYERS-ULAM STABILITY OF QUADRATIC FUNCTIONAL EQUATIONS

P.PALANI
Assistant Professor
Department of Mathematics
Sri Vidya Mandir Arts & Science College
Uthangarai, Krishnagiri (DT)-636902, T.N. India.

S.JAIKUMAR
Assistant Professor
Department of Mathematics
Sri Vidya Mandir Arts & Science College
Uthangarai, Krishnagiri (DT)-636902, T.N. India.

Abstract
In this paper, we establish the general solution and the generalized Hyers-Ulam stability problem for the equation
\[f(2x+y) + f(2x-y) = f(x+y) + f(x-y) + 6f(x), \]
(1)

1. Introduction
In 1940, S.M. Ulam [20] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of homomorphisms:

It is significant for us to decrease the possible estimator of the stability problem for the functional equations. This work is possible if we consider the stability problem in the of Hyers-Ulam-Rassias for a functional equations(1). As a result, we have much better possible upper bounds for the equations (1) than those of Czerwik [4] and Skof-Cholewa[3].

Solution of \[f(2x+y) + f(2x-y) = f(x+y) + f(x-y) + 6f(x), \]
Let \(\mathbb{R}^+ \) denote the set of all nonnegative real numbers and let both \(E_1 \) and \(E_2 \) be the vector spaces.

We here present the general solution of (1)

Theorem 1
Let \(\phi : \mathbb{R}^2 \to \mathbb{R}^+ \) be a function such that
\[
\sum_{i=0}^{\infty} \frac{\phi(2^i x, 0)}{4^i} = \left(\sum_{i=1}^{\infty} 4^i \phi \left(\frac{x}{2^i}, 0 \right) \right), \text{respectively}
\]

(2)

Converges and

\[
\lim_{n \to \infty} \frac{\phi(2^n x, 2^n y)}{4^n} = 0 \quad \left(\lim_{n \to \infty} 4^n \phi \left(\frac{x}{2^n}, \frac{y}{2^n} \right) = 0 \right), \forall x, y \in E_1
\]

(3)

Suppose that a function \(f : X \to Y \) Satisfies

\[
\| f(2x + y) + f(2x - y) - f(x + y) - f(x - y) - 6f(x) \| \leq \phi(x, y), \forall x, y \in E_1
\]

(4)

For all \(x, y \in X \). Then there exists a unique quadratic function \(T : X \to Y \) Which Satisfies the equation (2.3) and the inequality

\[
\| f(x) - T(x) \| \leq \frac{1}{8} \sum_{i=0}^{\infty} \phi(2^i x, 0)
\]

(5)

\[
\left(\| f(x) - T(x) \| \leq \frac{1}{8} \sum_{i=1}^{\infty} 4^i \phi \left(\frac{x}{2^i}, 0 \right) \right),
\]

for all \(x \in X \). The function \(T \) is given by

\[
T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n}
\]

(6)

for all \(x \in X \).

Proof:

Putting \(y = 0 \) in \(f(2x + y) + f(2x - y) = f(x + y) + f(x - y) + 6f(x) \), and divided by \(8 \), we have

\[
\| \frac{f(2x)}{4} - f(x) \| \leq \frac{1}{8} \phi(x, 0)
\]

(7)

for all \(x \in X \). Replacing \(x \) by \(2x \) in (7) and dividing by \(4 \) and summing the resulting inequality with (7), we get

\[
\| \frac{f(2^2 x)}{4^2} - f(x) \| \leq \frac{1}{8} \left[\phi(x, 0) + \frac{\phi(2x, 0)}{4} \right]
\]

(8)

for all \(x \in X \). Using the induction on a positive integer \(n \), we obtain that

\[
\| \frac{f(2^n x)}{4^n} - f(x) \| \leq \frac{1}{8} \sum_{i=0}^{n-1} \phi(2^i x, 0)
\]

(9)

\[
\leq \frac{1}{8} \sum_{i=0}^{\infty} \phi(2^i x, 0)
\]

for all \(x \in X \). In order to prove convergence of the sequence \(\left\{ \frac{f(2^n x)}{4^n} \right\} \), we divide inequality (9)

by \(4^m \) and also replace \(x \) by \(2^m x \) to find that for \(n, m > 0 \),

20
\[\left\| \frac{f(2^n 2^m x) - f(2^m x)}{4^n} \right\| \leq \frac{1}{8} \sum_{i=0}^{n-1} \phi(2^i 2^m x, 0) \]
\[\leq \frac{1}{8} \sum_{i=0}^{n-1} \phi(2^i 2^m x, 0) \]

Since the right hand side of the inequality tends to 0 as \(m \) tends to infinity, the sequence \(\left\{ \frac{f(2^n x)}{4^n} \right\} \) is a Cauchy sequence. Therefore, we may define \(T(x) = \lim_{n \to \infty} 2^{-2n} f(2^n x) \) for all \(x \in X \).

By letting \(n \to \infty \) in (9), we arrive at the formula (5).

To show that \(T \) satisfies the equation (2.3), replace \(x,y \) by \(2^n x, 2^n y \), respectively in
\[f(2x + y) + f(2x - y) = f(x + y) + f(x - y) + 6f(x) \]
and divided by \(4^n \), then it follows that
\[4^n \left\| f(2^n (2x + y)) + f(2^n (2x - y)) - f(2^n (x + y)) - f(2^n (x - y)) - 6f(2^n x) \right\| \leq 4^{-n} \phi(2^n x, 2^n y). \]

Taking the limits as \(n \to \infty \), we find that \(T \) satisfies (2.3) for all \(x,y \in X \).

To prove the uniqueness of the quadratic function \(T \) subject to (1), let us assume that there exists a quadratic function \(S: X \to Y \) which satisfies (2.3) and the inequality (1).

Obviously, we have \(S(2^n x) = 4^n S(x) \) and \(T(2^n x) = 4^n T(x) \) for all \(x \in X \) and \(n \in \mathbb{N} \). Hence it follows from (1) that
\[\left\| S(x) - T(x) \right\| = 4^{-n} \left\| S(2^n x) - T(2^n x) \right\| \]
\[\leq 4^{-n} \left(\left\| S(2^n x) - f(2^n x) \right\| + \left\| f(2^n x) - T(2^n x) \right\| \right) \]
\[\leq \frac{1}{4^n} \sum_{i=0}^{n-1} \phi(2^i 2^n x, 0) \]

For all \(x \in X \). By letting \(n \to \infty \) in the preceding inequality, we immediately find the uniqueness of \(T \). This completes the proof of the theorem.

Throughout this paper, let \(B \) be a unital Banach algebra with norm \(\| \cdot \| \), and let \(B_1 \) and \(B_2 \) be the left Banach \(B \)-modules with norm \(\| \cdot \| \) and \(\| \cdot \| \), respectively.

A quadratic mapping \(Q: B_1 \to B_2 \) is called \(B \)-quadratic if
\[Q(ax) = a^2 Q(x), \quad \forall a \in B, \forall x \in B_1. \]

Corollary 1.1.

Let \(\phi: B_1 \times B_1 \to \mathbb{R}^+ \) be a function satisfies (1) and (2) for all \(x,y \in B_1 \). Suppose that a mapping \(f: B_1 \to B_2 \) satisfies
\[\left\| f(2ax + ay) + f(2ax - ay) - \alpha^2 f(x + y) - \alpha^2 f(x - y) - 6\alpha^2 f(x) \right\| \leq \phi(x,y) \]

For all \(\alpha \in B(\| \alpha \| = 1) \) and for all \(x,y \in B_1 \) and \(f \) is measurable or \(f(tx) \) is continuous in \(t \in \mathbb{R} \) for each fixed \(x \in B_1 \). Then there exists a unique \(B \)-quadratic mapping \(T: B_1 \to B_2 \), defined by (5), which satisfies the equation (2.3) and the inequality (1) for all \(x \in B_1 \).
Proof:
By theorem 3.1, it follows from the inequality of the statement for $\alpha = 1$ that there exists a unique quadratic mapping $T : b B_i \rightarrow b B_2$ satisfying the inequality (3.4) for all $x \in b B_i$. Under the assumption that f is measurable or $f(tx)$ is continuous in $x \in \mathbb{R}$ for each fixed $x \in b B_i$, by the same reasoning as the proof of [5], the quadratic mapping $T : b B_i \rightarrow b B_2$ satisfies

$T(tx) = t^2 T(x)$, $\forall x \in b B_i \forall t \in \mathbb{R}$.

That is, T is B-quadratic. For each fixed $\alpha \in B(\alpha \neq 0)$, replacing f by T and setting $y = 0$ in (2.3), we have $T(\alpha x) = \alpha^2 T(x)$ for all $x \in b B_i$. The last relation is also true for $\alpha = 0$. For each element $\alpha \in B(\alpha \neq 0), a = |a| \cdot \frac{\alpha}{|a|}$.

Since T is B-quadratic and $T(\alpha x) = \alpha^2 T(x)$ for each element $\alpha \in B(\alpha \neq 1)$,

$T(ax) = T \left(|a| \cdot \frac{a}{|a|} \cdot x \right)$

$= |a|^2 \cdot T \left(\frac{\alpha}{|a|} \cdot x \right)$

$= |a|^2 \cdot \frac{\alpha^2}{|a|^2} T(x)$

$= a^2 T(x)$, $\forall \alpha \in B(\alpha \neq 0), \forall x \in b B_i$.

So the unique B-quadratic mapping $T : b B_i \rightarrow b B_2$, is also B-quadratic, as desired.

This completes the proof of the corollary.

Corollary 1.2.
Let E_1 and E_2 be Banach spaces over the complex field \mathbb{C}, and let $e \geq 0$ be a real number.

Suppose that a mapping $f : E_1 \rightarrow E_2$ satisfies

$\|f(2ax + \alpha y) + f(2ax - \alpha y) - \alpha^2 f(x + y) - \alpha^2 f(x - y) - 6\alpha^2 f(x)\| \leq \varepsilon$

for all $\alpha \in \mathbb{C}(\alpha \neq 1)$ and for all $x, y \in E_1$ and f is measurable or $f(tx)$ continuous in $t \in \mathbb{R}$ for each fixed $x \in E_1$. Then there exists a unique B-quadratic mapping $T : E_1 \rightarrow E_2$ which satisfies the equation (1.3) and the inequality

$\|f(x) - T(x)\| \leq \frac{\varepsilon}{6}, \forall x \in E_1$.

Corollary 1.3.
Let X and Y be a real normed space and Banach space respectively, and let e, p, q be real numbers such that $e \geq 0, q > 0$ and either $p, q < 2$ or $p, q > 2$. Suppose that a function $f : X \rightarrow Y$ satisfies

$\|f(2x + y) + f(2x - y) - f(x + y) - f(x - y) - 6f(x)\| \leq e \left(\|x\|^p + \|y\|^q \right)$

for all $x, y \in X$. Then there exists a unique quadratic function $T : X \rightarrow Y$ which satisfies the equation (1.3) and the inequality
\[\|f(x) - T(x)\| \leq \frac{\varepsilon}{2|4 - 2^p|}\|x\| \]

for all \(x \in X \) and for all \(x \in X - \{0\} \) if \(p < 0 \).

The function \(T \) is given by \(T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n} \) if \(p,q < 2 \)

\[T(x) = \lim_{n \to \infty} 4^n f \left(\frac{x}{2^n} \right) \text{ if } q > 2 \]

for all \(x \in X \). Further, if for each fixed \(x \in X \) the mapping \(t \to f(tx) \) from \(X \) to \(Y \) is continuous, then \(T(rx) = r^2T(x) \) for all \(r \in X \).

The proof of the corollary.

Corollary 1.4

Let \(X \) and \(Y \) be a real normed space and a Banach space, respectively, and let \(\varepsilon \geq 0 \) be real number. Suppose that a function \(f : X \to Y \) satisfies

\[\|f(2x + y) + f(2x - y) - f(x + y) - f(x - y) - 6f(x)\| \leq \varepsilon \]

for all \(x, y \in X \). Then there exists a unique quadratic function \(T : X \to Y \) defined by

\[T(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n} \]

which satisfies the equation (1.3) and the inequality

\[\|f(x) - T(x)\| \leq \frac{\varepsilon}{6} \] (12)

for all \(x \in X \). Further, if for each fixed \(x \in X \) the mapping \(t \to f(tx) \) from \(X \) to \(Y \) is continuous, then \(T(rx) = r^2T(x) \) for all \(r \in X \).

Corollary 1.5

Let \(X \) and \(Y \) be a real normed space and Banach space, respectively, and let \(\varepsilon \geq 0, 0 < p \neq 2 \) be real number. Suppose that a function \(f : X \to Y \) satisfies

\[\|f(2x + y) + f(2x - y) - f(x + y) - f(x - y) - 6f(x)\| \leq \varepsilon (\|x\|^p + \|y\|^p) \]

for all \(x, y \in X \). Then there exists a unique quadratic function \(T : X \to Y \) which satisfies the equation (1.3) and the inequality

\[\|f(x) - T(x)\| \leq \frac{\varepsilon}{2 |9 - 3^p|}\|x\|^p \]

for all \(x \in X \). The function \(T \) is given by

\[T(x) = \lim_{n \to \infty} \frac{f(3^n x)}{9^n} \text{ if } 0 < p < 2 \]

\[T(x) = \lim_{n \to \infty} 9^n f \left(\frac{x}{3^n} \right) \text{ if } q > 2 \]

for all \(x \in X \). Further, if for each fixed \(x \in X \) the mapping \(t \to f(tx) \) from \(X \) to \(Y \) is continuous, then \(T(rx) = r^2T(x) \) for all \(r \in X \).

REFERENCES

