AN ASYMMETRICAL INTERLEAVED DC-DC BOOST CONVERTER FOR HIGH STEP UP APPLICATIONS

K.Suganya1, M.Purushothaman2

PG Scholar, Karpaga Vinayaga College of Engineering & Technology, Chennai, India1
Assistant Professor, Karpaga Vinayaga College of Engineering & Technology, Chennai, India2
Sugan7v@gmail.com1, purushoth143@gmail.com2

ABSTRACT

A new high step-up converter is projected for a photovoltaic system. An asymmetrical interleaved high step-up converter achieves high step up gain through a voltage multiplier module. The voltage multiplier module is organised by a conventional boost converter and coupled inductors. A conventional boost converter is incorporated to achieve a considerably higher voltage conversion ratio. This configuration reduces the current stress through each power switch. And also constrains the input current ripple, which decreases the conduction losses of MOSFETs. Since the energy stored in leakage inductances is recycled to the output terminal, the efficiency of the system is improved.

Keywords: Asymmetrical Interleaved Converter, Coupled Inductor, PV system

I. INTRODUCTION

Mounting energy shortage has valued the use of renewable energy systems like PV system. But the energy obtained from renewable systems is considerably low. Thus, high step-up dc-dc converters are widely engaged in many renewable energy applications [7]. Photovoltaic systems are predicted to play an important role in future energy creation [12]. These systems convert light energy into electrical energy, and by using step-up converter they transfer low voltage into high voltage.

II. CONVENTIONAL ASYMMETRICAL INTERLEAVED CONVERTER

An asymmetrical interleaved converter is extensively used for achieving high step-up conversion and for high-power application [14]. A conventional boost converter and two coupled inductors are located in the voltage multiplier module, which is mounted on a boost converter to form an asymmetrical interleaved structure. Primary windings of the coupled inductors are engaged to reduce the input current ripple, and secondary windings of the coupled inductors are connected in series to lengthen the voltage gain.

III. MODES OF OPERATION

Mode 1 [t0, t1]: At t=t0, The power switches S1 and S2 are turned ON. Now all the diodes are reversed-biased and the Magnetizing inductors Lm1 and Lm2 as well as leakage inductors Lk1 and Lk2 are linearly charged by the input voltage source Vin.

Mode 2 [t1, t2]: At t=t1, the power switch S2 is turned OFF, therefore the diodes D2 and D4 are turned ON. The energy stored in the magnetizing inductor Lm2 is transferred to the secondary side and it charges the output filter capacitor C3. The input voltage source, and the energy stored in magnetizing inductor Lm2, leakage inductor Lk2,
voltage-lift capacitor C_b is discharged to the output filter capacitor C_1 through the diode D_2, thereby extending the voltage on C_1.

Mode 3 [t_2, t_3]: At $t=t_2$, the diode D_2 automatically turns OFF because the overall energy stored in the leakage inductor L_{k2} is entirely released to the output filter capacitor C_1. The Magnetizing inductor L_{m2} transfers energy to the secondary side and it charges the output filter capacitor C_3 through the diode D_4 until t_3.

Mode 4 [t_3, t_4]: At $t=t_3$, the power switch S_2 is turned ON and all the diodes are turned OFF. Now all the diodes are reversed-biased and the Magnetizing inductors L_{m1} and L_{m2} as well as leakage inductors L_{k1} and L_{k2} are linearly charged by the input voltage source V_{in}.

Mode 5 [t_4, t_5]: At $t=t_4$, the power switch S_1 is turned OFF, therefore diodes D_1 and D_3 are turned ON. Now the energy stored in the magnetizing inductor L_{m1} is transferred to the secondary side and it charges the output filter capacitor C_2. The input voltage source and the energy stored in the magnetizing inductor L_{m1} is completely released to the voltage-lift capacitor C_b through the diode D_1, which supplies extra energy to C_b.

Mode 6 [t_5, t_0]: At $t=t_5$, the diode D_1 is automatically turns OFF because the entire energy stored in the leakage inductor L_{k1} is totally released to voltage-lift capacitor C_b. Now the magnetizing inductor L_{m1} transfers energy to the secondary side and it charges the output filter capacitor C_2 through the diode D_3 until t_0.

Fig.2. Modes of operation of the proposed system

IV. Voltage Gain

From the equivalent circuit of the proposed converter, the first phase converter is considered as a conventional boost converter. Thus the voltage derived from V_{Cb} can be expressed as,

$$ V = ____ (1) $$

When the power switch S_1 is switched ON and the power switch S_2 is turned OFF, the voltage V_{C1} can be derived from,

$$ V = ____ + ____ (2) $$

Fig.3. Steady Waveform of the Proposed Converter at CCM
The energy transformation from the primary side charges the output filter capacitors C_2 and C_3. When the power switch S_2 is in turn-on state and the power switch S_1 is in turn-off state, V_{C2} is equal to the induced voltage of N_1 and the induced voltage of N_s. And when the power switch S_1 is in turn-on state and the power switch S_2 is in turn-off state, V_{C3} is also equal to induced voltage of N_1 and the induced voltage of N_2. As a result, voltages V_{C2} and V_{C3} can be derived from

$$= \quad = \quad (1 \quad = \quad) \quad (3)$$

The output voltage V_0 can be derived from,

$$= \quad + \quad + \quad = \quad (4)$$

The voltage gain of the proposed asymmetrical interleaved converter is expressed as,

$$= \quad (5)$$

When the duty cycle is merely 0.6, the voltage gain reaches 10 at a turns ratio n of 1. The voltage gain reaches 30 at a turn’s ratio n of 5.

V. SIMULATION CIRCUIT DIAGRAM

VI. SIMULATION RESULTS
Voltage and current waveform of MOSFET S_1 and S_2

Voltage and current waveform of diode D_1 and D_2
Voltage and current waveform of diode D3 and D4

Capacitor voltage and gate pulse

Voltage and current waveform of CCM

Voltage and current waveform of proposed converter
Efficiency waveform of the proposed system

VII. CONCLUSION
This paper has offered the principles, steady state analysis, and experimental results for a proposed asymmetrical interleaved converter. The proposed converter has been successfully employed in an efficiently high step-up conversion without an excessive duty ratio. The interleaved PWM scheme decreases the currents that pass through each power switch and constrained the input current ripple. The experimental results indicate that leakage energy is recycled through capacitor C_b to the output terminal. The voltage stresses over the power switches are also restricted. Higher efficiency is obtained. Thus, the proposed asymmetrical interleaved converter is suitable for PV systems and other renewable energy applications which need high step-up and high-power energy conversion.

REFERENCES

