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Abstract—In 2G mobile terminals, the VD consumes 
approximately one third of the power consumption 
of  a  baseband  mobile  transceiver.  Thus,  in  3G 
mobile  systems,  it  is  essential  to reduce the power 
consumption of the VD. In this report the register 
exchange (RE) method, adopting a pointer concept, 
is  used  to  implement  the  survivor  memory  unit 
(SMU)  of  the  VD.  For  the  implementation  part, 
hardware  implementation  of  MLVD  through 
Synopsys  Design  Compiler  Synthesis  is  done.  For 
synthesis UMC-180nm Library is used.

Index Terms— Viterbi Decoder, SMU, ACSU, RE, 
MLVD 

I.  INTRODUCTION

The  register  exchange  (RE)  method,  adopting  a 
pointer  concept,  is  used  to  implement  the  survivor 
memory  unit  (SMU)  of  the  VD.  The  method  entails 
assigning a pointer to each register or memory location. 
The  contents  of  the  pointer,  which  points  to  one 
register, is altered to point to a second register, instead 
of  copying  the  contents  of  the  first  register  to  the 
second. When the pointer concept is applied to the RE's 
SMU implementation[2], there is no need to copy the 
contents of the SMU and rewrite them, but one row of 
memory is still needed for each state of the VD. Thus, 
the VDs in CDMA systems require only 256 rows of 
memory, hence reducing the VD's power consumption. 
Also, if the initial state of the convolutional encoder is 
known,  the  entire  SMU is  reduced  to  only one  row. 
Because the decoded data is generated in the required 
order,  even  this  row of  memory  is  dispensable.  The 
zero-memory  architecture  is  called  the  MemoryLess 
Viterbi  Decoder  (MLVD)[6],  and  reduce  power 
consumption.

Another problem of the VD, which is addressed in 
this report,  is  the Add Compare Select  Unit  (ACSU) 
which is composed of 128 butterfly ACS modules.

The ACSU's high parallelism has been previously 
solved by using a bit serial implementation. The 8-bit 
First Input First Output (FIFO) register, needed for the 
storage of each path metric (PM), is at the heart of the 
single bit serial ACS butterfly module. A new, simply 

controlled shift register is designed at the circuit level 
and integrated into the ACS module.

A. Structure  of Viterbi Decoder

The  four  functional  blocks  of  VD  in  term  of 
implementation, including branch  metric  unit  (BMU), 
add-compare-select unit (ACSU), feedback unit (FBU) 
and survivor memory unit (SMU).

Fig.1 Functional Block of VD

The BMU calculates branch metric of each branch 
according to maximum likelihood of the received data. 
The ACSU makes the sum of branch and path metrics, 
then compares and selects the survivor path metric and 
the  decision  bit.  The  FBU  stores  the  survivor  path 
metric for ACSU to be used in the next cycle. The SMU 
produces the decoded data based on the decision bit and 
the  survivor  path  metric.  The  SMU  marked  by 
boldfaced  letters  in  Fig.  1  significantly  influences 
latency, power and chip area in a VD.

B. Viterbi Decoding Algorithms

In  1967, Viterbi  developed the Viterbi Algorithm 
(VA) as a method to decode convolutional codes [1]. 
The  VA uses  the  trellis  diagram  to  decode  an  input 
sequence,  as  demonstrated  in  Figure  2.  The  VA[4], 
which uses a hard decision format, is exhibited in Fig.2. 
A node is assigned to each state for each time stage.The 
transition  between  two  states  is  represented  by  a 
branch,  which  is  assigned  a  weight,  referred  to  as  a 
branch  metric  (BM).  The  BM  is  a  measure  of  the 
likelihood  of  the  transition,  given  the  noisy 
observations.  The  BMs that  are  accumulated  along  a 
path form a path metric  (PM).  For  the two branches 
entering the same state, the branch with the smaller PM 
survives,  and  the  other  one  is  discarded.  Then  two 
methods can be used to extract  the decoded bits:  the 
trace back (TB) or the register exchange (RE)[3].
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C. Trace Back (TB) Method

At the last stage of the trellis diagram Fig 2, the TB 
method extracts the decoded bits,  beginning from the 
state  with the minimum PM, S0. From this state  and 
tracing  backwards  in  time  by  following  the  survivor 
path, which originally contributed to the current PM, a 
unique path is identified.

Fig.2  Trace Back (TB) Viterbi Decoding

D. Register Exchange (RE) Method

In the RE approach, a register is assigned to each 
state. The register records the decoded output sequence 
along the path from the initial state to the final state. 
This is depicted in Fig 3. At the last stage, the decoded 
output sequence is the one that is stored in the survivor 
path register, the register assigned to the state with the 
minimum PM.

Fig.3 Register Exchange (RE) Method

II.  IMPLEMENTATION

A. Viterbi Decoder Implementation

The Viterbi decoder is introduced by the flow chart 
in Fig.5. With more specification, we will introduce it 
with the micro architecture of the hardware.

Here, we will introduce the Next state ROM, BMU 
block,  ACS  block,  trace-back  block  and  decode-data 
block one by one as shown in the Fig. 6.

The  Finite  State  Machine  (FSM)  of  our  Viterbi 
decoder  is  composed  by  5  states  and  11  possible 
conditions shown in fig.4.

Fig.4 The Finite State Machine of Viterbi decoder

Fig.5 Flow Chart of the Viterbi decoder
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Fig.6  Function allocations in
micro architecture of VD

When the reset signal is set high, Viterbi decoder 
needs to initialize the Next state Rom. The architecture 
of the Next state ROM is shown in the fig.7.

Fig.7 The Next State ROM hardware 
implementation

Fig.8  shows the ACS module of viterbi decoder.

Fig.8  The ACS Module

The total working of decoder can be summarized 
as follows:

1) The BM Unit (BMU) which calculates the BMs;

2) The Add Compare Select Unit (ACSU) which adds 
the BMs to the corresponding PMs, compares the 
new PMs, and then stores the selected PMs in the 
Path. Metric Memory (PMM); at the same time, the 
ACSU stores the associated survivor path decisions 
in the Survivor Memory Unit (SMU);

3) The SMU which stores the survivor path decisions; 
then the TB mechanism is applied to the SMU.

B. Architecture of MLVD

The  diagram  presented  in  Fig.9  shows  the  RE 
approach  with  pointer  implementation  (the  upper 
register carries the pointer and the lower register carries 
the decoded bits)[5]. The first row of memory decodes 
the data, if an initial state, S0, is assumed. The last row 
records  the  decoded  data,  if  an  initial  state,  S255,  is 
assumed, and so on. At the end of the decoding process, 
the row which has the lowest PM is chosen to be the 
decoder output.

Fig.9 New RE approach with pointer 
implementation.
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If the initial state is known, then there is no need 
for the storage of the other rows except one row next to 
that  state.  The new VD implementation is  called,  the 
MemoryLess Viterbi Decoder (MLVD)[6]. 

Fig. 10 MLVD approach with pointer 
implementation

The MLVD is an extra low power design for a VD 
with the only restriction of resetting the encoder register 
at  each L of the encoded data bits  and providing the 
necessary  synchronization.  The  block  diagram  of  the 
MLVD, designed in VHDL, is shown in Fig.11[6].

Fig.11 MLVD block diagram

Table I   VD Specification

Constraint Length K= 9

Coding Rate r = 1/3

Generator 
Polynomials

G0= 557, G1=633, G2= 711

Decision Level 3-bit Soft Decision 

Path Metric 8-Module Arithmetic

Target Speed 2 Mbps

In order to have a built-in self-test design, a Linear 
Feedback Shift Register (LFSR) and a comparator are 
added.  The LFSR produces  the random input for  the 
encoder, whereas the comparator compares the delayed 
version of the LFSR with the output of the MLVD.

III SIMULATIONS AND RESULTS

To calculate the power estimation, cost values for 
the MLVD operations are provided in Table 2. It shows 
the  maximum power  consumption  is  in  ACSU block 
and also take the maximum area.

For  hardware  implementation  of  the  design,  we 
continue with ASIC flow. For that we have synthesized 
the design  using Synopsys  Design Compiler.  Various 
area and power report has been generated to summarize 
the need of hardware size for the decoder.

Fig.12  SNR vs BER for MLVD

Fig.13 BER For Different Rates 3/4, 2/3 and 1/2
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CONCLUSIONS

Among the several architectures that are available 
to realize the VD, the RE method  with pointer concept 
is  conceptually  the  simplest,  fastest,  and  most 
commonly used in VDs with only small values of k. By 
reinforcing the initial state of the convolutional encoder 
and synchronizing the VD with the resetting procedure, 
a design, the MLVD, with the highest power reduction 
is  realized.  The  new  MLVD  is  a  memoryless  high 
speed, low latency, and low power variation to the VD 
with an approximated BER of 10-5 and an SNR of 5 dB. 
The  MLVD  along  with  a  convolutional  encoder  is 
implemented on a Xilinx ISE chip to demonstrate both 
the  design’s  functionality  and  feasibility  of 
implementation.  Design  synthesis  results  shows  the 
hardware  utilization  and  power  consumption  of  the 
resources on FPGA and chip.
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