
International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

Hardware Implementation of Viterbi Decoder for Wireless Applications

Bhupendra Singh1, Sanjeev Agarwal2 and Tarun Varma3

Deptt. of Electronics and Communication Engineering,
1Amity School of Engineering and Technology, Noida, India

Email: 1 bsingh.tech@gmail.com
 2,3 Malaviya National Institute of Technology, Jaipur, India
Email: 2 san@mnit.ac.in , 3tarun.varma.jaipur@gmail.com

Abstract—In 2G mobile terminals, the VD consumes
approximately one third of the power consumption
of a baseband mobile transceiver. Thus, in 3G
mobile systems, it is essential to reduce the power
consumption of the VD. In this report the register
exchange (RE) method, adopting a pointer concept,
is used to implement the survivor memory unit
(SMU) of the VD. For the implementation part,
hardware implementation of MLVD through
Synopsys Design Compiler Synthesis is done. For
synthesis UMC-180nm Library is used.

Index Terms— Viterbi Decoder, SMU, ACSU, RE,
MLVD

I. INTRODUCTION

The register exchange (RE) method, adopting a
pointer concept, is used to implement the survivor
memory unit (SMU) of the VD. The method entails
assigning a pointer to each register or memory location.
The contents of the pointer, which points to one
register, is altered to point to a second register, instead
of copying the contents of the first register to the
second. When the pointer concept is applied to the RE's
SMU implementation[2], there is no need to copy the
contents of the SMU and rewrite them, but one row of
memory is still needed for each state of the VD. Thus,
the VDs in CDMA systems require only 256 rows of
memory, hence reducing the VD's power consumption.
Also, if the initial state of the convolutional encoder is
known, the entire SMU is reduced to only one row.
Because the decoded data is generated in the required
order, even this row of memory is dispensable. The
zero-memory architecture is called the MemoryLess
Viterbi Decoder (MLVD)[6], and reduce power
consumption.

Another problem of the VD, which is addressed in
this report, is the Add Compare Select Unit (ACSU)
which is composed of 128 butterfly ACS modules.

The ACSU's high parallelism has been previously
solved by using a bit serial implementation. The 8-bit
First Input First Output (FIFO) register, needed for the
storage of each path metric (PM), is at the heart of the
single bit serial ACS butterfly module. A new, simply

controlled shift register is designed at the circuit level
and integrated into the ACS module.

A. Structure of Viterbi Decoder

The four functional blocks of VD in term of
implementation, including branch metric unit (BMU),
add-compare-select unit (ACSU), feedback unit (FBU)
and survivor memory unit (SMU).

Fig.1 Functional Block of VD

The BMU calculates branch metric of each branch
according to maximum likelihood of the received data.
The ACSU makes the sum of branch and path metrics,
then compares and selects the survivor path metric and
the decision bit. The FBU stores the survivor path
metric for ACSU to be used in the next cycle. The SMU
produces the decoded data based on the decision bit and
the survivor path metric. The SMU marked by
boldfaced letters in Fig. 1 significantly influences
latency, power and chip area in a VD.

B. Viterbi Decoding Algorithms

In 1967, Viterbi developed the Viterbi Algorithm
(VA) as a method to decode convolutional codes [1].
The VA uses the trellis diagram to decode an input
sequence, as demonstrated in Figure 2. The VA[4],
which uses a hard decision format, is exhibited in Fig.2.
A node is assigned to each state for each time stage.The
transition between two states is represented by a
branch, which is assigned a weight, referred to as a
branch metric (BM). The BM is a measure of the
likelihood of the transition, given the noisy
observations. The BMs that are accumulated along a
path form a path metric (PM). For the two branches
entering the same state, the branch with the smaller PM
survives, and the other one is discarded. Then two
methods can be used to extract the decoded bits: the
trace back (TB) or the register exchange (RE)[3].

44

mailto:tarun.varma.jaipur@gmail.com
mailto:2san@mnit.ac.in
mailto:1bsingh.tech@gmail.com

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

C. Trace Back (TB) Method

At the last stage of the trellis diagram Fig 2, the TB
method extracts the decoded bits, beginning from the
state with the minimum PM, S0. From this state and
tracing backwards in time by following the survivor
path, which originally contributed to the current PM, a
unique path is identified.

Fig.2 Trace Back (TB) Viterbi Decoding

D. Register Exchange (RE) Method

In the RE approach, a register is assigned to each
state. The register records the decoded output sequence
along the path from the initial state to the final state.
This is depicted in Fig 3. At the last stage, the decoded
output sequence is the one that is stored in the survivor
path register, the register assigned to the state with the
minimum PM.

Fig.3 Register Exchange (RE) Method

II. IMPLEMENTATION

A. Viterbi Decoder Implementation

The Viterbi decoder is introduced by the flow chart
in Fig.5. With more specification, we will introduce it
with the micro architecture of the hardware.

Here, we will introduce the Next state ROM, BMU
block, ACS block, trace-back block and decode-data
block one by one as shown in the Fig. 6.

The Finite State Machine (FSM) of our Viterbi
decoder is composed by 5 states and 11 possible
conditions shown in fig.4.

Fig.4 The Finite State Machine of Viterbi decoder

Fig.5 Flow Chart of the Viterbi decoder

45

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

Fig.6 Function allocations in
micro architecture of VD

When the reset signal is set high, Viterbi decoder
needs to initialize the Next state Rom. The architecture
of the Next state ROM is shown in the fig.7.

Fig.7 The Next State ROM hardware
implementation

Fig.8 shows the ACS module of viterbi decoder.

Fig.8 The ACS Module

The total working of decoder can be summarized
as follows:

1) The BM Unit (BMU) which calculates the BMs;

2) The Add Compare Select Unit (ACSU) which adds
the BMs to the corresponding PMs, compares the
new PMs, and then stores the selected PMs in the
Path. Metric Memory (PMM); at the same time, the
ACSU stores the associated survivor path decisions
in the Survivor Memory Unit (SMU);

3) The SMU which stores the survivor path decisions;
then the TB mechanism is applied to the SMU.

B. Architecture of MLVD

The diagram presented in Fig.9 shows the RE
approach with pointer implementation (the upper
register carries the pointer and the lower register carries
the decoded bits)[5]. The first row of memory decodes
the data, if an initial state, S0, is assumed. The last row
records the decoded data, if an initial state, S255, is
assumed, and so on. At the end of the decoding process,
the row which has the lowest PM is chosen to be the
decoder output.

Fig.9 New RE approach with pointer
implementation.

46

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

If the initial state is known, then there is no need
for the storage of the other rows except one row next to
that state. The new VD implementation is called, the
MemoryLess Viterbi Decoder (MLVD)[6].

Fig. 10 MLVD approach with pointer
implementation

The MLVD is an extra low power design for a VD
with the only restriction of resetting the encoder register
at each L of the encoded data bits and providing the
necessary synchronization. The block diagram of the
MLVD, designed in VHDL, is shown in Fig.11[6].

Fig.11 MLVD block diagram

Table I VD Specification

Constraint Length K= 9

Coding Rate r = 1/3

Generator
Polynomials

G0= 557, G1=633, G2= 711

Decision Level 3-bit Soft Decision

Path Metric 8-Module Arithmetic

Target Speed 2 Mbps

In order to have a built-in self-test design, a Linear
Feedback Shift Register (LFSR) and a comparator are
added. The LFSR produces the random input for the
encoder, whereas the comparator compares the delayed
version of the LFSR with the output of the MLVD.

III SIMULATIONS AND RESULTS

To calculate the power estimation, cost values for
the MLVD operations are provided in Table 2. It shows
the maximum power consumption is in ACSU block
and also take the maximum area.

For hardware implementation of the design, we
continue with ASIC flow. For that we have synthesized
the design using Synopsys Design Compiler. Various
area and power report has been generated to summarize
the need of hardware size for the decoder.

Fig.12 SNR vs BER for MLVD

Fig.13 BER For Different Rates 3/4, 2/3 and 1/2

47

International Journal of Computer Communication and Information System (IJCCIS)
– Vol2. No1. ISSN: 0976–1349 July – Dec 2010

CONCLUSIONS

Among the several architectures that are available
to realize the VD, the RE method with pointer concept
is conceptually the simplest, fastest, and most
commonly used in VDs with only small values of k. By
reinforcing the initial state of the convolutional encoder
and synchronizing the VD with the resetting procedure,
a design, the MLVD, with the highest power reduction
is realized. The new MLVD is a memoryless high
speed, low latency, and low power variation to the VD
with an approximated BER of 10-5 and an SNR of 5 dB.
The MLVD along with a convolutional encoder is
implemented on a Xilinx ISE chip to demonstrate both
the design’s functionality and feasibility of
implementation. Design synthesis results shows the
hardware utilization and power consumption of the
resources on FPGA and chip.

REFERENCES
[1] Viterbi, "Error bounds for convolutional codes

andasymptotically optimum decoding algorithm," IEEE
Transactions on Information theory, vol. It-13, no. 2, pp.
260_269, April 1967.

[2] Dalia A. El-Dib and M.I. Elmasry, “Modified Register-
Exchange Viterbi Decoder for Low-Power Wireless
Communications,” IEEE Transactions on Circuits and Systems
I: Regular Papers, vol. 51, no. 2, pp. 371- 378, February 2004.

[3] S. B. Wicker, "Error Control Systems for Digital
Communication and Storage". Prentice Hall, 1995.

[4] G. Forney, “The viterbi algorithm", Proceedings of the IEEE,
vol. 61, no. 3, pp. 268_278, March 1973.

[5] Dalia A. El-Dib and M.I. Elmasry,”Low power register-
exchange Viterbi decoder for high speed wireless
communications,” IEEE International Symposium on Circuits
and Systems, May 2002, pp. 737-740.

[6] S A. El-Dib and M.I. Elmasry, “Memoryless Viterbi Decoder:
an extremely low power Viterbi Decoder,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 51, no. 3, pp.
371- 378, February 2004.

Table II Table for Synthesis of MLVD using
Synopsys Design Compiler

48

