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Abstract—Nullifying the servo bandwidth errors improves the 

strehl ratio by a substantial quantity in adaptive optics systems. 
An effective method for predicting atmospheric turbulence to 
reduce servo bandwidth errors in real time closed loop 
correction systems is presented using data mining. Temporally 
evolving phase screens are simulated using Kolmogorov statistics 
and used for data analysis. A data cube is formed out of the 
simulated time series. Partial data is used to predict the 
subsequent phase screens using the progressive prediction 
method. The evolution of the phase amplitude at individual 
pixels is segmented by implementing the segmentation 
algorithms and prediction was made using linear as well as non 
linear regression. In this method, the data cube is augmented 
with the incoming wave-front sensor data and the newly formed 
data cube is used for further prediction. The statistics of the 
prediction method is studied under different experimental 
parameters like segment size, decorrelation timescales of 
turbulence and segmentation procedure. On an average, 6% 
improvement is seen in the wave-front correction after 
progressive prediction using data mining. 

I. INTRODUCTION 

Data mining is a useful technology in predicting future 
trends and behaviours of temporal data patterns. Predicting the 
future trends in business is one of the most commonly used 
applications of temporal data mining strategies [1]. The 
realization of the importance of data mining in astronomical 
community has led to many useful results [2-4]. Adaptive 
optics has become an indispensable technology used in large 
telescopes to improve the image quality, degraded due to the 
presence of atmospheric disturbances [5]. In an astronomical 
adaptive optics system, the temporally induced turbulence has 
to be corrected in real time with the help of a correcting 
element, generally a deformable mirror. The information of 
the shape of the wave-front is detected by the wave-front 
sensor. The control algorithm then calculates the command 
values to be addressed to the actuators of the deformable 
mirror that conjugates the ill effect of turbulence. Prediction 
of turbulence gained significance in the case of adaptive 
optics to remove the servo lag error [6].  

In this paper, the atmospheric turbulence is modelled such a 
way that it follows Kolmogorov spatial statistics. A time 
series of evolving turbulence is simulated using the wind 
model as described in the next section. The series of phase 
screens are then stacked to form a large data cube. A small 
portion of the large data cube is chosen for prediction. The 
evolution of phase at individual pixels is segmented using the 
bottom up algorithm in the smaller data cube. Regression is 
performed to estimate the value of phase of the next 
subsequent phase screen at each of the pixels. A progressive 
prediction model is used to estimate future turbulence screens. 
The performance of the prediction is limited by the 
segmentation parameters, the polynomial fitting, the servo lag 
timescales and finally the data statistical errors. The 
computational results of the effectiveness of prediction are 
presented. 

 

II. MODELLING ATMOSPHERIC TURBULENCE 

Any phase function f(x, y) can be written as a linear 
combination of the basis set of Zernike polynomials, Zi(x, y). 
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where, ai represents the Zernike moments. Atmospheric 
turbulence can be simulated using the Kolmogorov theory of 
turbulence [7]. Noll established a relationship between the 
spatial statistics of Kolmogorov and the correlation statistics 
of the Zernike moments. In order to simulate phase screens 
that satisfy the statistical theory of Kolmogorov, the Zernike 
moments must be determined by the relationship [8], 
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where, D is the diameter of the telescope; r0 is the 
atmospheric seeing parameter; n and m are the radial and 
azimuthal indices of Zernike polynomials. Calculation of the 
turbulence function through the computation of Zernike 
moments using Eq. (2) gives frozen in turbulence for a given 
atmospheric seeing condition. The time-evolving turbulence 
wave-fronts cannot be obtained by just changing the Zernike 
coefficients, because the produced Zernike coefficients lead to 
temporally uncorrelated wave-fronts. To simulate dynamic 
turbulence, we can use the simple properties of the 
propagation of wind in the atmosphere as suggested earlier [9]. 

 

Fig. 1.  Modelling the temporal evolution of atmospheric turbulence 

 
The propagation properties of wind that can be considered are 
the motion of wind in the horizontal direction and the 
convection of wind as shown in Fig. 1. As a first step we 
simulate a large wave-front.  A smaller part of this large 
wave-front is then read. In the third step, another part of the 
large wave-front which is a few pixels away, defined by the 
rotational and translational velocities at that time is read. 
Third step is repeated to simulate a series of wave-fronts 
replicating atmospheric turbulence. The series of phase 
screens are represented as a time series A = {Aj}, j takes 
integral values from 1 to N, where N is the number of phase 
screens read from the large phase screen. For simplicity, the 
velocities are assumed to be constant over time. A few sample 
turbulence phase screens evolving in time are shown in Fig. 2. 

 
Fig. 2.  Series of evolving turbulence phase screens 

 

The correlation between the first phase screen and the 
subsequent phase screens varies as shown in the graph in Fig. 
3. Since any two phase screens randomly chosen also can be 
correlated by 25%, we can conveniently assume that the phase 
screens correlated by less than 25% are decorrelated. 

 
Fig. 3. Correlation of subsequent phase screens in the time series 

 

 

III. FORMATION OF DATA CUBES 

The formed phase screens are pixelated two dimensional 
arrays containing gray scale values. To predict the subsequent 
phase screens, it is important to study the variation of the gray 
scale value of a particular pixel in time. In order to club the 
pixel gray scale data, data cubes can be formed by stacking 
the phase screens in the same order as they appear in the time 
series as shown in Fig. 4. The number of phase screens used 
to form the data cube is called the length of the data cube.
  

The data cube formed in this fashion can be used for further 
analysis. Data sets are formed by collecting the temporal 
evolution of the phase amplitude corresponding to individual 
pixels. There are as many data sets as the number of pixels. 
Segmentation algorithms are applied on these individual data 
sets and interpolation techniques are used to predict the future 
expectation value corresponding to individual pixels. To 
overcome space and speed problems due to over stacking, the 
older wave-front sensor data is removed while adding new 
data and the capacity of the data cube at any point of time is 
maintained a constant. This is the reason why it is called the 
progressive prediction method. 

 

 
Fig. 4. Data cube formed out of the time series database 

 

IV. SEGMENTATION METHODOLOGY 

Piecewise linear segmentation is one of the commonly used 
time series representation [10]. In the piecewise linear 
representation, the time series data is segmented into smaller 
pieces and each of them is fitted with a straight line. There are 
many algorithms to segment the data like sliding windows, 
top-down and bottom-up algorithms. In the sliding windows 



algorithm, a particular segment is grown until it reaches an 
error threshold. Beyond the error threshold, a new segment is 
begun. As the name suggests, in the top-down algorithm, the 
time series is broken recursively until it goes below the 
threshold error. The bottom-up algorithm is a compliment of 
top-down algorithm wherein segmenting is done starting from 
the smallest possible interval and adjacent segments are 
merged until the error is just below the error threshold. It is 
experimentally verified that top-down and bottom-up 
algorithms have an edge over sliding windows in terms of 
their performance [10].  

Above mentioned segmentation algorithms are used for 
segmentation process in the case of simulated Kolmogorov 
turbulence time series. The various parameters in 
segmentation that affect the performance of prediction 
algorithm include the segment size, the spatial and temporal 
scales of variations in turbulence and the error threshold. 
Some other parameters like the number of pixels and the 
turbulence simulation model are not considered in our study 
which might have considerable significance in terms of 
prediction accuracy. 

Segmentation is generally associated with piecewise linear 
representation. Linear interpolation as well as linear 
regression is performed on individual segments after using 
one of the methodologies for segmentation. Using nonlinear 
regression on segments gives absurd results when the length 
of individual segments is small. Higher order regression on 
larger segments will reduce the fitting error and effectively 
minimizes the time by reducing the number of segments. 

V. PROGRESSIVE PREDICTION 

Prediction of turbulence in adaptive optics correction of the 
blurring of images due to atmospheric turbulence and 
dynamic processes in the human eye is helpful in reducing the 
servo lag error. This error is introduced by the extreme bounds 
imposed by the system servo bandwidth that is defined as the 
temporal frequency at which the real time closed loop 
corrections take place [11].  

The upper bound on the bandwidth is limited by two factors; 
one is the finite response times of the sensor, corrector and the 
control system and the second is the minimum exposure time 
required to lessen the wave-front sensor data errors. The 
second upper bound is applicable in the case of atmospheric 
turbulence case where the exposure timescales are nearly 5 
milliseconds when imaging a natural guide star and 1 
millisecond in the case of laser guide star. The lower bound is 
the decorrelation time, defined as the time scale over which 
the wave-fronts become decorrelated. The decorrelation time, 
τ is defined as 

 
τ=0.31r0/vw                               (3) 

 
where r0 is the Fried parameter and vw is the wind velocity 
[11]. For the Hanle site, the decorrelation timescale, tD is 
nearly 18 milliseconds [12]. Within td, the wave-fronts remain 
correlated. Since the exposure time is finite (nearly 1 
millisecond even for a Laser Guide Star), and there will be a 

lag due to the reconstruction of the wave-front from sensor 
data and generation of actuator command values to be 
addressed to the deformable mirror, the wave-front that is 
sensed and the wave-front that is being corrected are 
uncorrelated by a certain amount. This incorrect compensation 
leads to imperfect correction of the atmospheric aberrations. 

A possible solution for this problem is to progressively 
predict the wave-front that might be arriving at a servo lag 
time, ‘tL’ later by using the available wave-front sensor 
information. According to our knowledge, data mining is 
explored for the first time in the case of adaptive optics 
applications. This can be done by following the three steps 
shown below: 

1) Segmentation of the individual temporal pixel data sets     
that are picked up from the data cube. 

2) Predicting the pixel value of the next phase screen 
using the regression formula for the last segment in 
individual pixel data sets. 

3) Forming the phase screen by combining the predicted  
pixel values. 

The prediction process is progressive in nature and each 
time the wave-front sensor data is obtained; it is concatenated 
at the end of the data cube. The size of the data cube is 
retained by removing the same number of phase screens from 
the other end. 

VI. EXPERIMENTS AND RESULTS 

Monte Carlo simulations were implemented by following 
the three steps suggested in the last section in the case of the 
time series of the simulated Kolmogorov phase screens. As 
hinted earlier, the degree of accuracy of prediction depends on 
the segment size or the error threshold chosen for 
segmentation, the order of polynomial fitting, the servo lag 
timescales and decorrelation time. Data cubes of length 350 
and phase screens of dimension 100 × 100 are used for 
analysis in the experiments. 

An optimum error threshold has to be chosen. Choosing a 
very tiny value will reduce the segment size and it may 
happen that the last segment size may not be sufficient enough 
to accurately predict the pixel variation trends. A large value 
of error threshold as expected leads to large errors. The choice 
of segmentation size and error threshold is thereby equivalent. 
The effect of choosing segment size is shown in the case of 
predicting turbulence phase screens for 4 realizations of time 
series data sets in Fig. 5. On the whole, a segment size of 3 - 4 
looks to be the optimum number.  

The ratio of the decorrelation time to servo lag error is the 
key factor that decides the phase screen that needs to be 
predicted. For example, if the decorrelation time is 15 
milliseconds and the servo lag time is nearly 5 milliseconds, 
the ratio turns out to be 3. From Fig. 3, the correlation goes 
below 25% (decorrelation cutoff) after 30 phase screens. This 
suggests that the phase screen that needs to be predicted is the 
tenth one which is correlated by 85% to the first one. 
Changing any of decorrelation time or servo lag error 
effectively changes these values. If prediction were not to be 
performed, we would be trying to compensate the wave-front 



using a wave-front that is only 85% correlated to it 
(reconstruction inefficiencies not included). This is the reason 
why the improvement due to prediction is calculated as the 
difference between the correlation of the last phase screen in 
the sub-data cube with the predicted one and the correlation of 
the last phase screen in the sub-data cube with the actual 
phase screen from the data cube. Decorrelation timescales are 
dependent on the seeing conditions and the servo lag error 
depends on the instrument speeds. The effect of varying ratio 
of decorrelation time to servo lag error is experimentally 
studied. The accuracy of predicting phase screens at different 
time lags within the decorrelation timescale is shown in Fig. 6. 
In this figure, the y-axis is normalized with the amount of 
decorrelation between the last phase screen in the sub-data 
cube and the actual phase screen. If the decorrelation between 
the last phase screen in the sub-data cube and the actual phase 
screen is 0.1, then the percentage improvement in predicting 
the 10th phase screen lies between 4.5-7.5% from the graph. 

 

 
 

Fig. 5. Percentage improvement in prediction at different segment sizes 

Prediction using linear interpolation, linear regression as well 
as higher order interpolation was performed. It was observed 
that interpolation using higher order polynomials generally 
fails in predicting the future phase screens accurately. This is 
because the choice of the polynomial fitting that must be used 
to pixel data sets is not consistent throughout the phase screen. 
Linear interpolation as well as linear regression methods 
performs better. Linear regression is although slower, the 
prediction performance on an average is better than linear 
interpolation by 1.5%. 

 
Fig. 6. Percentage improvement in prediction at different time lags 

VII. CONCLUSIONS 

An attempt has been made to predict the incoming wave-
fronts distorted due to atmospheric turbulence using data 
mining the time series data. This will help in improving the 
errors induced by the servo lag delays introduced by different 
components in adaptive optics imaging systems. On an 
average we report an improvement of 6% due to prediction 
using data mining. It is evident from the simulation analysis 
that the improvement depends on segmentation, decorrelation 
timescales, servo lag error timescales and the fitting 
methodology used. Very large and too small segmentation 
errors lead to worse prediction. Segmentation size of 3 or 4 
was found to be optimum for best prediction. For the 
simulated phase screens, it was found that predicting the 5th 
phase screen gives maximum correlation, which corresponds 
to nearly 3 milliseconds servo lag error when the decorrelation 
time is 18 milliseconds. This study helps astronomers to 
optimize the exposure time in adaptive optical imaging 
systems. 
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