
                                                                                                         International Journal of Computer Network and Security(IJCNS) 
                                                                                                                                             Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283 

www.ijcns.com 

1 
 

A Novel XML Documents Using Clustering Tree Pattern Algorithms 
 

1N.Kannaiya Raja, M.E., (P.hd),2Dr. K.Arulanandam, Prof and Head,3P. Umadevi, M.E.,(A/P), 4A.Balakrishnan, M.E 
CSE Department 

Arulmigu Meenakshi Amman College of Engg, Thiruvannamalai Dt, India 
kanniya13@hotmail.co.in 

sathisivamkva@gmail.com 
umasri05@yahoo.co.in 

drbalaphd1687@yahoo.com 
 

      
Abstract 

 In a business enterprises generate and exchange 
XML data, are used more often for increasing the 
demand of efficient processing of queries on the XML. 
The searching for the  occurrences of tree pattern query 
are on XML database is a core operation in XML query 
process which meets more problems in holistic algorithm,  
also demonstrated is an efficient technique to suggest 
XML-tree pattern with parent-child operations. However, 
XML query have more functions such as negation 
function, order based axis, and  wildcards and also 
created and invented extended XML tree pattern 
matching have implement a good relationship between 
negation function, wildcards function and ordered 
restriction.  In this paper, we research a large set of xml 
clustered tree pattern which may have parent-child 
relation on top-down approach. We also established 
framework on multiple matching pattern with strong 
demonstrate for proof of multiple holistic algorithm based 
on our theorem, we proposed a set of efficient process for 
three categories of xml clustering pattern algorithms set of 
experiment on both real life and synthetic dataset 
demonstrated with effectiveness and efficiency of our 
proposed theory of algorithms. Index term: 
Algorithm, XML, Clustering tree pattern, Query processing. 
 
1.  INTRODUCTION 

The growing important of XML data more often 
inducing the needs for efficient process of XML clustering 
pattern algorithm on xml data. XML clustering pattern 
commonly represented has a rooted, labeled XML query tree 
are used in the XML data for example, Xpath query. The 
effective matching of XML clustering pattern algorithm has 
more often as multi operation in XML query processing.  In 
particular, a stack-based algorithm to match binary structural 
relationship including parent-child (P-C) and ancestor-
descendant (A-D) relationship. The limitation of parent-child 
and ancestor-descendant relationship is the size of 
intermediate results may become very large, even if the final 
results are small. A novel holistic Twig join algorithm named 
twigstack, Twigstack guarantees there are no “useless” 
intermediate requests for queries with only (A-D) 
relationship. In recent works that examine how to enlarge the 
query class of holistic algorithm. These algorithms have 

proven highly promising and make their way into XML query 
processing. 

 
        XML clustering pattern algorithm with XML query that 
prior algorithm focus on XML clustering pattern queries with 
only (P-C) and (A-D) relationships. The small works are done 
on XML clustering queries which may contain wildcards, 
negation function and order restriction. All of the functions 
used in the XML query language such as Xpath and Xquery. 
 
        In this paper, we have call an XML clustering pattern 
algorithm with XML query which include negation function, 
wildcards and order restriction as extended XML clustering 
patterns. Query (a) include a wildcard node such as "α”, 
which can match any single node in an XML database. Query 
(b) which can include a negative edge, denoted by” β “. This 
query finds out the "A" that has a child "B", but has no child 
"C". 

In Xpath language, the negative edge can be 
represented by "not" Boolean function. Query(C) it has the 
order restriction, it is equal to an “Xpath” the "γ" shows in a 
children under 'A' are ordered. Finally (d) which is very 
complexity, which contains wildcards, negation form and 
order restriction. Opmality of the holistic algorithm prior 
XML clustering pattern algorithm with XML query do not 
completely exploit the "optimality" of the holistic algorithms. 
Twistack which guarantees for very   useful intermediate 
result for the queries with only A-D relationship. Another 
algorithm twigstack list which enlarges the optimal query 
class of the twigstack by including P-C relationship. Another 
important question is whether twigstack list can be improved 
(or) not. Hence, the current problem which includes how to 
find a large query class which can be processed optimally and 
also how to effectively answer a query which cannot be 
guaranteed to process optimally. 

 
 Notify that prior works is no algorithm is optimal for 
queries with (A-D) and (P-C) relationship. In this paper, to 
explore the framework called “matching” to find out the large 
optimal query class. Twig pattern queries that the practical 
application is only part of query nodes belong to the return 
nodes called output nodes. Take the Xpath “\\A [B]\\C” as an 
example, only 'C' elements and its sub tree are answers. In 
this paper, we have to develop a new encoding method to file 
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the mapping relationship and avoid output non return nodes. 
Main result that in general, it has given an extended XML 
clustering pattern algorithm which may include (P-C, A-D)  
relationship, Order restriction, negation function and 
wildcards. We have to consider the problem effectively 
matching the extended XML clustering pattern algorithm. 
The main theme of our algorithm is to identifying a large 
queries class which can be optimally processed. Like existing 
papers on XML Tree pattern matching. But in this paper, we 
can calculate a holistic algorithm “optimal" for the different 
kind of query class. If it guarantees that output. 
 

Optimality of holistic algorithm  that prior XML 
clustering pattern algorithms with XML query do not 
completely exploit the "optimality” of holistic algorithms. 
Twigstacks which guarantees for very useful intermediate 
result for queries with only (A-D) relationship. Another 
algorithm twig stack list which enlarges the optimal query 
class of twig stack by including (P-C) relationship. Another 
important question is whether twigstack list can be improved 
(or) not. Hence the current problem which includes how to 
find a large query class which can be processed optimally and 
also how to effectively answer a query which cannot be 
guaranteed to process optimally. Notify that prior works if 
there is no algorithm is optimal for queries with (A-D) and 
(P-C) relationship. In this paper, to explore the framework 
called “matching" to find out the large optimal query class. 

  
 Intermediate results contribute to final result. We 

can find out the 3 categories of extended XML clustering 
pattern algorithm (1) queries with (P-C) , (A-D) relationship, 
wildcards and order restriction,  denoted as Z\,\\,α; and (2) 
queries with (P-C),(A-D) relationship, wildcard, and order  
restriction, denoted as Z\,\\,α,β; and (3) queries like (P-C) , 
(A-D) relationships, wildcard, negation functions denoted as 
Z\, \\,α,β,γ. For each category we have to find out the 
respective optimal query class. 
The technical contribution of this paper is summarized as 
follows: 
 We have created a theoretical framework on optimal 

processing of XML clustering pattern queries. We can 
show that “Matching" is the key of result in the sub 
optimality of the holistic algorithm. Twigstack is a fact 
that optimal for queries with only (A-D) relationship can 
be explained that no matching cross can be found for any 
XML document. 

 Based upon our theoretical analysis, we can create a 
series of holistic algorithm match to achieve a large 
optimal query class for '3'categories of queries (i.e.\, \\, α; 
Z\, \\, α, β; and Z\, \\, α, β, γ). 

 We conducted a set of synthetic and real data set for 
performance comparison. We compared true match with 
prior four holistic XML clustering pattern matching 
algorithms with XML query. The results show that our 
algorithm can correctly process extended XML 

clustering pattern. We can develop mainly for the 
reduction in the site of the intermediate results.  
 

    The Extensible Markup Language (XML) has become a 
standard for data representation. With the continuous growth 
in the XML data, the ability to manage massive collections of 
XML data and to discover knowledge from them becomes 
essential for the Web-based information systems [4,6]. A 
possible solution is to group the similar XML data based on 
their context and structure. The clustering of XML data 
facilitates a number of advanced applications such as 
improved information retrieval, data and schema integration, 
document classification analysis, structure summary and 
indexing, and query processing and optimization [3,5]. In this 
paper we define a new method for computing the similarity 
between any two XML documents in terms of their structure. 
The higher this similarity, the more similar the two 
documents are in terms of structure, and the more likely they 
are to have been created from the same DTD.  
 

Crafting a good similarity metric for this setting is 
somewhat difficult since two documents created from the 
same DTD can have radically different structures (due to 
Nesting and repeating elements), but we would still want to 
compute a higher similarity between these documents. We 
account for this by introducing Nesting reduction and 
repeating reduction method in all sections of the document. 
Using our resulting Weight Edge-set similarity comparison 
(WESC) measure, we show that standard clustering 
algorithms do very well at pulling together documents 
derived from the same DTD. 

 
    Outline that the remaining paper shows the preliminaries 
about research problem and processing modal. Section (3) 
gives the set if theories about matching cross and Section (4) 
give the extended XML clustering pattern algorithm called 
tree match. Section (5) presents experimental studies b/w the 
novel algorithm and existing method. Finally, section (6) 
gives existing work related on the XML clustering pattern 
algorithm. 
  
2.  RELATED WORKS 
    
A. Clustering XML PATTERN 

We have to be deal with the problem of clustering 
XML documents using such as namely (1) the XML 
structural is ordered labeled trees, (2) similarity calculated 
from these tree and (3) clustering algorithms. Clustering 
methods are divided into mainly two types. Hierarchical and 
Non-hierarchical methods. A non-hierarchical method which 
consists of data set into a number of clusters. Hierarchical 
methods provide a nested sets of data in which pairs of 
elements or clusters are connected successively until every 
element in the data set becomes linked. Nonhierarchical 
methods are low computational requirements because the 



                                                                                                         International Journal of Computer Network and Security(IJCNS) 
                                                                                                                                             Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283 

www.ijcns.com 

3 
 

value is (O (kn) for example n records need to be grouped 
into k clusters, the parameters like the number of formed 
clusters are known as priori. Hierarchical methods are 
computationally expensive because the value is O (n2) and n 
documents need to be clustered. The hierarchical methods are 
used to increasing the effectiveness and efficiency of 
recovery [8–10]. The wide ranging of clustering methods you 
can refer to [11，12]. In this paper, we have to select the 
Hierarchical methods. 

 
 
 

B.  Clustering experimental 
We have to test the performance of overall quality of 

the clustering results using Artificial and original data. In 
which original data are used records from the ACM 
SIGMOD database, which depends on three DTDS. Artificial 
XML records are generated by using IBM’s Alpha Works 
XML generator, which is depends on six DTDS. All the 
experiments are performed on a PC, Pentium(R) D 2.80GHZ, 
1.24GB RAM, using the HTML programming language. 
Figure 1 presents the structure of the programme. We have to 
show the result on Table 1 based upon on the nine DTDS. 
In general, at each node in the query tree pattern, that 
specifies the node predicate on the attributes e.g., tag. 
 
 
 
 
 
 

Figure.1.Programme structure 
 

Using WESC and the type of Selkow. From the 
result we can see WESC development accuracy on the 
clustering. The overall performance on the time cost, mainly 
for the large XML documents. 
          

Table 1  
Experimental result 

 
Number of docs 1150 1150 930 930 

Number of 
DTDS 

9 9 9 9 

Average size 0.83kb 0.83kb 4.2kb 4.2kb 
algorithm WESC selkow WESC selkow 
Number of 
clustering  

9 9 9 9 

Accuracy rate 0.975 0.873 0.949 0.812 

Recall rate 0.978 0.881 0.937 0.911 

Time 
consuming 

5.3s 9.8s 8.2s 14.6s 

 

 
C.  Data Model and Query Patterns 

Node labels are a set of attribute and value pairs, 
which suffices to form tags, PCDATA content, etc. The XML 
database consisting of the ordered, labeled trees and rooted 
forest, each node representing the element and the edges 
corresponding element-Subelement relationships. 

 
From the sample XML document of Figure 2 and its 

tree representation is shown in Figure 3. Queries in XML 
query languages like XQuery, Quilt [7], and XML-QL make 
fundamental use of node labeled tree patterns for matching 
related portions of data in the XML database. The query 
pattern labels which consists of element tags, attribute-value 
comparisons and string values, and the query pattern edges 
which include the parent-child edges “using sole line” or 
ancestor-descendant edges “using a dual line”. For example, 
the XQuery path looks in the represented of the embedded 
tree pattern in Figure 3(a). This query pattern would match 
the document in Figure 2. In general, at each node in the 
query tree pattern, that specifies the node predicate on the 
attributes e.g., tag, content of the node .In this paper, exactly 
what is permitted in this predicate is not material. The well-
organized access of mechanism that constructing the suffices 
such as index structures to find the XML database nodes 
which satisfies the predicate nodes. 
 
D.  Matching Basic Structural Relationships 

The query pattern can be matched by (i) binary 
structural relationship should be matched against to the XML 
database, and (ii) “stitching” collectively these basic matches. 
A difficult query tree pattern decomposed into a basic binary 
structural relationship such as parent-child and ancestor-
descendant between relationships of nodes. For example, the 
basic structural relationships matching to the query tree 
pattern of Figure 3(a) are shown in Figure 3(b). 

  
A structural relationships should match the 

straightforward approach against an XML database is to use 
traversal-style algorithms by using child-pointers or parent-
pointers. Such “tuple-at-a-time” processing strategies are 
known to inefficient compared to the set-at-a-time strategies 
used in database systems. Pointer-based joins have been 
optional solution to this problem in object-oriented databases 
and shown as quite well-organized. 

 
In the framework of XML databases which may 

have a large number of children nodes and the query pattern 
are often to the matching ancestor-descendant structural 
relationships (for example, the (book, author) edge in the 
query pattern of Figure 4, in addition to parent-child 
structural relationships. In this case, there are two options: (i) 
explicitly maintaining only (parent, child) node pairs and 
identifying (ancestor, descendant) node pairs through 
repeated joins; or (ii) explicitly maintaining (ancestor, 

 Output 

 

Structural 
summary 
extractor 

Wise 
structural 
distance 

Output 
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descendant) node pairs. A large amount of query processing 
time would have to use the previous approach, although the 
later approach would take to use a 
 
<book> 
<title> XML < =title> 
<all authors> 

<author> jane < =author> 
<author> john < =author> 

< =all authors> 
<year> 2000 < =year> 
<Chapter> 

<head> Origins < =head> 
<Section> 

<head> ...< =head> 
      <section> ...< =section> 
     < =section> 
    <section> ...< =section> 
  < =chapter> 
<chapter> ...< =chapter> 

< =book>  
 

Figure. 2. Sample XML document 
 
          

  Figure .3.Tree representation 
 
 
 
 
 
 
 
 
 
 

Figure .4. Structural relationships 

 
much quadratic space. In also using pointer-based joins is 
likely to be infeasible. 
 
E.  Representing Positions of Elements and String Values in 
an XML Database: 

The well-organized key to an uniform mechanism 
for set-at-a-time (join-based) matching of structural 
relationship is a positional representation of occurrences of 
XML elements and string values in the XML database e.g., 
[9, 29], which extend the classic reversed index data structure 
in information recovery .  

 
The element of an XML database is occurrence by 

the represented as the 3-tuple DocId, SPos : EPos, LevelNo, 
and the location of a string occurance in the XML database 
can be represented as the 3-tuple DocId, SPos, LevelNo, 
where (i) DocId is the identifier of the document; (ii) SPos 
and EPos can be created by counting word numbers from the 
beginning of the document with identifier DocId awaiting the 
start of the element and end of the element  respectively and 
(iii) LevelNo is the nesting depth of the element  in the text. 
Figure 3 depict a 3- tuple with each tree node, based on this 
representation of location. (A node from these Docld is 
chosen by 1). 

 
Structural relationships between tree nodes both 

elements or string values whose position are recorded in this 
method can be determined easily: (i) ancestor-descendant: a 
tree node n2 whose location in the XML database is 
programmed as (D2; S2 : E2;L2) is a descendant of a tree 
node n1 whose location is programmed as (D1; S1 : E1;L1) 
iff D1 = D2; S1 < S2 and E2 < E1;1 (ii) parent-child: a tree 
node n2 whose location in the XML database is programmed 
as (D2; S2 : E2;L2) is a child of a tree node n1 whose 
location is programmed as (D1; S1 : E1; L1) iff D1 = D2; S1 
< S2;E2 < E1,and L1 +1 = L2.  

 
Figure 2 is indicated by example of the author node 

position is  (1;6 : 8; 3) is a descendant of the book node with 
position is (1;1 : 70; 1), and the string “jane” with location (1; 
7; 4) is a author node child  with location (1;6 : 8; 3). A 
solution point value note that representation of node position 
in the XML data tree is that inspection an ancestordescendant 
structural relationship is as simple as inspection a parentchild 
structural relationship.  

 
The motive is that one can test for an ancestor-

descendant structural relationship without knowledge of the 
intermediate nodes on the path. Also significance noting but 
this representation of position of elements and string values 
permit for inspection order and proximity relationships 
between elements and/or string values, the main issue of 
these paper is not explored further. 
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3.  CONSTRUCTION 
 

In the rest of this paper, we take advantage of the 
(DocId, SPos: EPos, LevelNo) representation of positions of 
XML elements and string values to (i) devise novel, I/O and 
CPU optimal (in an asymptotic sense) join algorithms for 
matching basic structural relationships (or, containment 
queries) against an XML database; (ii) present an analysis of 
these algorithms; and (iii) show their behavior in practice 
using a variety of experiments. The task of matching a 
complex XML clustering query pattern then reduces to that of 
evaluating a join expression with one join operator for each 
binary structural relationship in the query pattern. Different 
join orderings may result in different evaluation costs, as 
usual. Finding the optimal join ordering is outside the scope 
of this paper, and is the subject of future work in this area.  
1For leaf strings, EPos is the same as SPos. 
 
 Algorithm Tree-Merge-Anc (AList, DList)  
 All nodes in AList and DList have the same DocId  

AList is the list of potential ancestors, in sorted order of 
SPos  

 DList is the list of potential descendants in sorted order 
of SPos  

 Desc-init = DList->FNode; OutputList = NULL; 
for (a = AList->FNode; a ! = NULL; a = a->NxtNode) { 
  for (d = init-desc; (d ! = NULL and d.SPos < a.SPos); d = d-
>NxtNode) { 

/*  unmatchable d’s */} 
   Desc-init = d; 
   for (d = init-desc; (d ! = NULL and and d.EPos < a.EPos); d 
= d->NxtNode){  

if ((a.SPos < d.SPos) and (d.EPos < a.EPos) 
       [ and (d.Levelno = a.LevelNo + 1)])  

} 
} 
 Condition for parent-child relationships 

{    
append (a,d) to OutputList;  
} 

 
Figure.5. Algorithm Tree-Merge-Anc with output in 

sorted ancestor/parent order 
 
A.  P-C and A-D Algorithms  

In this section, we develop two families of join 
algorithms for matching parent-child and ancestor-descendant 
structural relationships efficiently: tree-relation and stack-
tree, and present an analysis of these algorithms. 

Consider an ancestor-descendant (or, parent-child) 
structural relationship (e1; e2), for example, (book, author) 
(or, (author, Jane)) in our running example. Let AList = [a1; 
a2; : : :] and DList = [d1; d2; : : :] be the lists of tree nodes 
that match the node predicates e1 and e2,  respectively, each 
list sorted by the (DocId, SPos) values of its elements. There 

are a number of ways in which the AList and the DList could 
be generated from the database that stores the XML data. For 
example, a native XML database system could store each 
element node in the XML data tree as an object with the 
attributes: ElementTag, DocId, SPos, EPos, and LevelNo. 

 
 An index could be built across all the element tags, 

which could then be used to find the set of nodes that match a 
given element tag. The set of nodes could then be sorted by 
(DocId, SPos) to produce the lists that serve as input to our 
join algorithms. Given these two input lists, AList of 
potential ancestors (or parents) and DList of potential 
descendants (resp, children), the algorithms in each family 
can output a list OutputList = [(ai; dj)] of join results, sorted 
either by (DocId, ai.SPos, dj.SPos) or by (DocId, dj.SPos, 
ai.SPos). Both variants are useful, and the variant chosen may 
depend on the order in which an optimizer chooses to 
compose the structural joins to match the complex XML 
query pattern. 

 
B.  Tree Relationship Join Algorithms 

The algorithms in the tree-relation family are a 
natural extension of traditional relational merge joins (which 
use an equality join condition) to deal with the multiple 
inequality conditions that characterize the ancestor-
descendant or the parent-child structural relationships, based 
on the (DocId, SPos: EPos, LevelNo) representation. The 
recently proposed multi-predicate merge join (MPMGJN) 
algorithm [29] is also a member of this family. The basic idea 
here is to perform a modified merge-join, possibly 
performing multiple scans through the “inner” join operand to 
the extent necessary. Either AList or DList can be used as the 
inner (resp., outer) operand for the join: the results are 
produced sorted (primarily) by the outer operand. In Figure 5, 
we present the tree-merge algorithm for the case when the 
outer join operand is the ancestor; this is similar to the 
MPMGJN algorithm. Similarly, Figure 6 deals with the case 
when the outer join operand is the descendant. For ease of 
understanding, both algorithms assume that all nodes in the 
two lists have the same value of DocId, their primary sort 
attribute. Dealing with nodes from multiple documents is 
straightforward, requiring the comparison of DocId values 
and the advancement of node pointers as in the traditional 
merge join. 

 
C.   An Analysis of the Tree-Merge Algorithms 

Traditional merge joins that use a single equality 
condition between two attributes as the join predicate can be 
shown to have time and space complexities O(jinputj + 
joutputj), on sorted inputs, while producing a sorted output. 
In general, one cannot establish the same time complexity 
when the join predicate involves multiple equality and/or 
inequality conditions. In this section, we identify the criteria 
under which tree-merge algorithms have asymptotically 
optimal time complexity. 
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Algorithm Tree-Merge-Anc for ancestor-descendant 
Structural Relationship: 
 
Theorem .1 The space and time complexities of Algorithm 
Tree-Merge-Anc are O (jAListj+jDListj Output Listj),for the 
ancestor-descendant structural relationship. 

The intuition is as follows. Consider first the case 
where no two nodes in AList are themselves related by an 
ancestordescendant relationship. In this case, the size of 
OutputList is O(jAListj + jDListj). Algorithm Tree-Merge-
Anc makes a  
Algorithm Tree-Merge-Desc (AList, DList) 
 Assume that all nodes in AList and DList have the same 

DocId  
 AList is the list of potential ancestors, in sorted order of 

SPos  
 DList is the list of potential descendants in sorted order 

of SPos  
init-anc = AList->FNode; OutputList = NULL; 
for (des = DList->FNode; des ! = NULL; des = des->NNode) 
{ 
      for (anc = init-anc; (anc ! = NULL and anc.EPos < 
des.SPos); anc = anc->NxtNode) { 

/* unmatchable a’s */} 
      init-anc = anc; 
      for (anc = init-anc; (anc ! = NULL and anc.SPos < 
anc.SPos); anc = anc->NxtNode)  
{ 

if ((anc.SPos < des.SPos) and (des.EPos < anc.EPos) 
[and (des.LevelNo = anc.LevelNo + 1)]) { 

     the condition is for parent-child relationships  
     append (anc,des) to OutputList; } 

} 
} 
 

Figure.6. Algorithm Tree-Merge-Desc with output in 
sorted descendant/child order 

 
Single pass over the input AList and at most two passes over 
the input DList.2 Thus, the above theorem are satisfied in this 
case.  

Consider next the case where multiple nodes in 
AList are themselves related by ancestor-descendant 
relationship. This can happen, for example, in the (section, 
head) structural relationship for the XML data in Figure 4. In 
this case, multiple passes may be made over the same set of 
descendant nodes in DList, and the size of OutputList may be 
O (jAListj _ jDListj), which is quadratic in the size of the 
input lists. However, we can show that the algorithm still has 
optimal time complexity, i.e., O (jAListj + jDListj + 
jOutputListj). One cannot establish the I/O optimality of 
Algorithm Tree-Merge-Anc. In fact, repeated paging can 
cause its I/O behavior to degrade in practice, as we shall see 
in Section 4. 

 
Algorithm Tree-Merge-Anc for parent-child Structural 
Relationship:  

When evaluating a parentchild structural 
relationship, the time complexity of Algorithm Tree-Merge-
Anc is the same as if one were performing an ancestor-
descendant structural relationship match between the same 
two input lists. However, the size of OutputList for the 
parent-child structural relationship can be much smaller than 
the size of the OutputList for the ancestor-descendant 
structural relationship. In particular, consider the case when 
all the nodes in AList form a (long) chain of length n, and 
each node in AList has two children in DList, one on either 
side of its child in AList; this is shown in Figure 7(a). In this 
case, it is easy to verify that the size of OutputList is 
O(jAListj + jDListj), but the time complexity of Algorithm 
Tree-Merge-Anc is O((jAListj + jDListj)2); the evaluation is 
pictorially depicted in Figure 6(b), where each node in AList 
is associated with the sublist of DList that needs to be 
scanned. The I/O complexity is also quadratic in the input 
size in this case. 
 
Algorithm Tree-Merge-Desc: There is no analog to Theorem 
1 for Algorithm Tree-Merge-Desc, since the time 2A clever 
implementation that uses a one node look ahead in AList can 
reduce the number of passes over DList to just one. 
Complexity of the algorithm can be ((jAListj + jDListj + 
jOutputListj) 2) in the worst case. This happens, for example, 
in the case shown in Figure 7(c), when the first node in AList 
is an ancestor of each node in DList. In this case, each node 
in DList has only two ancestors in AList, so the size of 
OutputList is O(jAListj + jDListj), but AList is repeatedly 
scanned, resulting in a time complexity of 
O(jAListj_jDListj); the  valuation is depicted in Figure 7(d), 
where each node in DList is associated with the sublist of 
AList that needs to be scanned. While the worst case 
behavior of many members of the treemerge family is quite 
bad, on some data sets and queries they perform quite well in 
practice. We shall investigate the behavior of Algorithms 
Tree-Merge-Anc and Tree-Merge-Desc experimentally in 
Section 4. 
 
D.  Stack-Tree Join Algorithms 

We observe that a depth-first traversal of a tree can 
be performed in linear time using a stack of size as large as 
the height of the tree. In the course of this traversal, every 
ancestor-descendant relationship in the tree is manifested by 
the descendant node appearing somewhere higher on the 
stack than the ancestor node. We use this observation to 
motivate our search for a family of stack based structural join 
algorithms, with better worst-case I/O and CPU complexity 
than the tree-merge family, for both parent-child and 
ancestor-descendant structural relationships. 
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Unfortunately, the depth-first traversal idea, even 
though appealing at first glance, cannot be used directly since 
it requires traversal of the whole database. We would like to 
traverse only the candidate nodes provided to us as part of the 
input lists. We now describe our stack-tree family of 
structural join algorithms; these algorithms have no 
counterpart in traditional join processing. 

 
 
E.  Stack-Tree-Desc 

Consider an ancestor-descendant structural 
relationship (e 1; e2). Let AList = [a1; a2; : : :] and DList = 
[d1; d2; : : :] be the lists of tree nodes that match node 
predicates e 1 and e2, respectively, sorted by the (DocId, 
SPos) values of its elements.  
 

 
Figure.7. (a), (b) Worst case for Tree-Merge-Anc and (c), 

(d) Worst case for Tree-Merge-Desc 
 

We first discuss the stack-tree algorithm for the case 
when the output list [(ai; dj)] is sorted by (DocId, dj.SPos, 
ai.SPos). This is both simpler to understand and extremely 
efficient in practice. The algorithm is presented in Figure 5 
and 6 for the ancestor-descendant case. 
 

The basic idea is to take the two input operand lists, 
AList and DList, both sorted on their (DocId, SPos) values 
and conceptually merge (interleave) them. As the merge 
proceeds, we determine the ancestor-descendant relationship, 
if any, between the current top of stack and the next node in 
the merge, i.e., the node with the smallest value of SPos. 
Based on this comparison, we manipulate the stack, and 
produce output. 

 
The stack at all times has a sequence of ancestor 

nodes, each node in the stack being a descendant of the node 
below it. When a new node from the AList is found to be a 
descendant of the current top of stack, it is simply pushed on 
to the stack. When a new node from the DList is found to be 
a descendant of the current top of stack, we know that it is a 

descendant of all the nodes in the stack. Also, it is guaranteed 
that it won’t be a descendant of any other node in AList. 
Hence, the join results involving this DList node with each of 
the AList nodes in the stack are output. If the new node in the 
merge list is not a descendant of the current top of stack, then 
we are guaranteed that no future node in the merge list is a 
descendant of the current top of stack, so we may pop stack, 
and repeat our test with the new top of stack. No output is 
generated when any element in the stack is popped. 

 
The parent-child case of Algorithm Stack-Tree-Desc 

is even simpler since a DList node can join only (if at all) 
with the top node on the stack. In this case, the “for loop” 
inside the “else” case of Figure 8 needs to be replaced with: 

if (d.LevelNo = stack->top.LevelNo + 1) append 
(stack->top,d) to OutputList 
 
Example 3.1 [Algorithm Stack-Tree-Desc] 
 

Some steps during an example evaluation of 
Algorithm Stack-Tree-Desc, for a parent-child structural 
relationship, on the dataset of Figure 9(a), are shown in 
Figures 9(b)–(e). The ai’s are the nodes in AList and the dj’s 
are the nodes in DList. Initially, the stack is empty, and the 
conceptual merge of AList and DList is shown in Figure 9(b). 
In Figure 9(c), a1 has been put on the stack, and the first new 
element of the merged list, d1, is compared with the stack top 
(at this point (a1; d1) is output).  

 
Figure 9(d) illustrates the state of the execution 

several steps later, when a1; a2; : : : ; an are all on the stack, 
and dn is being compared with the stack top (after this point, 
the OutputList includes (a1; d1); (a2; d2); : : : ; (an; dn)). 
Finally, Figure 9(e) shows the state of the execution when the 
entire input has almost been processed. Only a 1 remains on 
the stack (all the other ai’s have been popped from the stack), 
and d2n is compared with a1. Note that all the desired 
matches have been produced while making only a single pass 
through the entire input. Recall that this is the same dataset of 
Figure 7(a), which illustrated the sub-optimality of Algorithm 
Tree-Merge-Anc, for the case of parent-child structural 
relationships. 
 
F.  Stack-Tree-Anc 

We next discuss the stack-tree algorithm for the case 
when the output list [(ai; dj)] needs to be sorted by (DocId, 
ai.SPos, dj.SPos). 

 
It is not straightforward to modify Algorithm Stack-

Tree-Desc to produce results sorted by ancestor because of 
the following: if node a from AList on the stack is found to 
be an ancestor of some node d in the DList, then every node 
a0 from AList that is an ancestor of a (and hence below a on 
the stack) is also an ancestor of d. Since the SPos of a0 
precedes the start position of a, we must delay output of the 
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join pair (a; d) until after (a0; d) has been output. But there 
remains the possibility of a new element d0 after d in the 
DList joining with a0 as long a0 is on stack, so we cannot 
output the pair (a; d) until the ancestor node a0 is popped 
from stack. Mean while, we can build up large join results 
that cannot yet be Algorithm Stack-Tree-Desc (AList, DList) 
/* Assume that all nodes in AList and DList have the same 
DocId */ 
 AList is the list of potential ancestors, in sorted order of 

SPos  
 DList is the list of potential descendants in sorted order 

of SPos  
anc = AList->FNode; des = DList->FNode; OutputList = 
NULL; 
While (the input lists are not empty or the stack is not empty) 
{ 

if ((anc.SPos > stack->top.EPos) and (des.SPos > 
stack->top.EPos)) { 

/* time to pop the top element in the stack 
*/ 

tuple = stack->pop (); } 
 else if (anc.SPos < des.SPos) { 

stack->push(a) 
anc = anc->NxtNode } 

else { 
for (anc1 = stack->bottom; anc1 ! = NULL; 

anc1 = anc1->up) { 
      append (anc1,des) to OutputList 

} 
des = des->NNode 

 
} 

} 
 

Figure.8. Algorithm Stack-Tree-Desc with output in 
sorted descendant order output. Our solution to this 

problem is described in Figure 9 for the ancestor-
descendant case. 

As with Algorithm Stack-Tree-Desc, the stack at all 
times has a sequence of ancestor nodes, each node in the 
stack being a descendant of the node below it. Now, we 
associate two lists with each node on the stack: the first, 
called self-list is a list of result elements from the join of this 
node with appropriate DList elements; the second, called 
inherit-list is a list of join results involving AList elements 
that were descendants of the current node on the stack. As  
 
before, when a new node from the AList is found to be a 
descendant of the current top of stack, it is simply pushed on 
to the stack. When a new node from the DList is found to be 
a descendant of the current top of stack, it is simply added to 
the self-lists of the nodes in the stack. 
  

Again, as before, if no new node (from either list) is 
a descendant of the current top of stack, then we are 

guaranteed that no future node in the merge list is a 
descendant of the current top of stack, so we may pop stack, 
and repeat our test with the new top of stack. When the 
bottom element in stack is popped, we output its self-list first 
and then its inherit-list. When any other element in stack is 
popped, no output is generated. Instead, we append its 
inherit-list to its self-list, and append the result to the inherit-
list of the new top of stack. 

 
 An optimization to the algorithm (incorporated in 

Figure 9) is as follows: no self-list is maintained for the 
bottom node in the stack. Instead, join results with the bottom 
of the stack are output immediately. This results in a small 
space savings, and renders the stack-tree algorithm partially 
non-blocking. 

 
G.  An Analysis of Algorithm Stack-Tree-Desc 
 

Algorithm Stack-Tree-Desc is easy to analyze. Each 
AList element in the input may be examined multiple times, 
but these can be amortized to the element on DList, or the 
element at the top of stack, against which it is examined. 
Each element on the stack is popped at most once, and when 
popped, causes examination of the new top of stack with the 
current new element. Finally, when a DList element is 
compared against the top element in stack, then it either joins 
with all elements on stack or none of them; all join results are 
immediately output. In other words, the time required for this 
part is directly proportional to the output size. Thus, the time 
required for this algorithm is O(jinputj + joutputj) in the 
worst case. Putting all this together, we get the following 
result: 
 
Theorem.2 The space and time complexities of Algorithm 
Stack-Tree-DescareO (jAListj+ jDListj + j outputListj), for 
both ancestor-descendant and parent-child structural 
relationships. 
 
Further, Algorithm Stack-Tree-Desc is a non-blocking 
algorithm. 

Clearly, no competing join algorithm that has the 
same input lists, and is required to compute the same output 
list, could have better asymptotic complexity. The I/O 
complexity analysis is straightforward as well.  Each page of 
the input lists is read once, and the result is output as soon as 
it is computed. Since the maximum size of stack is 
proportional to the height of the XML database tree, it is 
quite reasonable to assume that all of stack fits in memory at 
all time. Hence, we have the following result: 

 
Theorem 3 The I/O complexity of Algorithm Stack-Tree-Desc 
is O(jAListj B + jDListj B + jOutputListj B), for ancestor-
descendant and parent-child structural relationships, where 
B is the blocking factor. 
 



                                                                                                         International Journal of Computer Network and Security(IJCNS) 
                                                                                                                                             Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283 

www.ijcns.com 

9 
 

H.   An Analysis of Algorithm Stack-Tree-Anc 
The key difference between the analyses of 

Algorithms Stack-Tree-Anc and Stack-Tree-Desc is that join 
results are associated with nodes in the stack in Algorithm 
Stack-Tree-Anc. Obviously, the list of join results at any 
node in the stack is linear in the output size. What remains to 
be analyzed is the appending of lists each time the stack is 
popped. 

If the lists are implemented as linked lists (with start 
and end pointers), these append operations can be carried out 
in unit time, and require no copying. Thus one comparison 
per AList input and one per output are all that are performed 
to manipulate stack. Combined with the analysis of 
Algorithm Stack-Tree-Desc, we can see that the time required 
for this algorithm is still O(jinputj + joutputj) in the worst 
case. The I/O complexity analysis is a little more involved. 
Certainly, one cannot assume that all the lists of results not 
yet output fit in memory. Careful buffer management is 
required. It turns out that the only operation we ever perform 
on a list is to append to it (except for the final read out). 

 
Figure.9. (a) Dataset (b)–(e) Steps during evaluation of 

Stack-Tree-Desc 
As such, we only need to have access to the tail of 

each list in memory as computation proceeds. The rest of the 
list can be paged out. When list x is appended to list y, it is 
not necessary that the head of list x be in memory, the append 
operation only establishes a link to this head in the tail of y. 
So all we need is to know the pointer for the head of each list, 
even if it is paged out. Each list page is thus paged out at  
 
most once, and paged back in again only when the list is 
ready for output. Since the total number of entries in the lists 

is exactly equal to the number of entries in the output, we 
thus have that the I/O required on account of maintaining lists 
of    results is proportional to the size of output (provided that 
there is enough memory to hold in buffer the tail of each list: 
requiring two pages of memory per stack entry — still a 
requirement within reason). All other I/O activity is for the 
input and output. This leads to the desired linearity result. 
 
Theorem4 The space and time complexities 
ofAlgorithmStack-Tree-Anc are O (jAListj+jDListj 
+jOutputListj), for both ancestor-descendant and parent-
child structural relationships. 
 

The I/O complexity of Algorithm Stack-Tree-Anc is 
O( jAListj B + jDListj B + jOutputListj B ), for both 
ancestor-descendant and parent-child structural 
relationships, where is the blocking Factor. 
 
4. EXPERIMENTAL EVALUATIONS 
 

In this section, we present the results of an actual 
implementation of the various join algorithms for XML data 
sets. Due to space limitations, we evaluate only the 
structural join algorithms we introduce in this paper, 
namely, TREE-MERGE JOIN(TMJ) and STACK-TREE 
JOIN (STJ). Once more, the output can be sorted in two 
ways, based on the “ancestor” node or the   descendant” 
node in the join. Correspondingly, we consider two flavors 
of these algorithms, and use the suffix “-A” and “-D” to 
differentiate between these. The four algorithms are thus 
labeled: TMJ-A, TMJ-D, STJA and STJ-D. 

 
 For reasons of space, we omit detailed comparison 

of our structural join algorithms with traversal-style 
algorithms, and with traditional relational join algorithms in 
a commercial database. As expected, the performance of the 
traversal-style algorithms degrades considerably with the 
size of the dataset, and yields very poor performance 
compared with our structural join algorithms. Also, 
consistent with the results of [29], structural join algorithms 
(implemented outside the database) perform significantly 
better than native relational DBMS join algorithms, even in 
the presence of indexes. 

 
We implemented the join algorithms in the TIMBER 

XML query engine. TIMBER is an native  XML query 
engine that is built on top of SHORE [5]. Since the goal of 
TIMBER is to efficiently handle complex XML queries on 
large data sets, we implemented our algorithms so that they 
could participate in complex query evaluation plans with 
pipelining. All experiments using TIMBER were run on a 
500MHz Intel Pentium III processor running WindowsNT 
Workstation v4.0. SHORE was compiled for a 8KB page 
size. SHORE buffer pool size was set to 32MB, and the 
container size in our implementation was 8000 bytes. 
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All numbers presented here are produced by running 

the experiments multiple times and averaging all the 
execution times except for the first run (i.e., these are warm 
cache numbers). 

 
Algorithm Stack-Tree-Anc (AList, DList) 
 Assume that all nodes in AList and DList have the same 

DocId  
 AList is the list of potential ancestors, in sorted order of 

SPos  
 DList is the list of potential descendants in sorted order 

of SPos  
anc = AList->FNode; des = DList->FNode; OutputList = 
NULL; 
while (the input lists are not empty or the stack is not empty) 
{ 
if ((anc.SPos > stack->top.EPos) andand (des.SPos > stack-
>top.EPos)) { 
/* time to pop the top element in the stack */ 

tuple = stack->pop(); 
if (stack->size == 0) { 

append tuple.inherit-list to OutputList } 
else { 

append tuple.inherit-list to tuple.self-list 
append the resulting tuple.self-list to stack-

>top.inherit-list 
} 
} 
             else if (anc.SPos < des.SPos) { 

stack->push(anc) 
anc = anc->NxtNode } 

else { 
for (anc1 = stack->bottom; anc1 ! = NULL; 

anc1 = anc1->up)  
{ 

    if (anc1 == stack->bottom) append 
(anc1,des) to OutputList 

    else append (anc1,des) to the self-list of 
anc1 
} 

            des = des->NxtNode 
       } 
} 

Figure.10. Algorithm Stack-Tree-Anc with output in 
sorted ancestor order 

 
5. WORKLOAD 
 

For our workload, we used the IBM XML data 
generator to generate a number of data sets, of varying sizes 
and other data characteristics, such as the fan out 
(MaxRepeats) and the maximum depth, using the 
Organization DTD presented in Figure 11. We also used the 
XMach-1 [1] and XMark [2] benchmarks, and some real 

XML data. The results obtained were very similar in all 
cases, and in the interest of space we present results only for 
the largest organization data set that we generated. This data 
set consists of 6.3 million element nodes, corresponding to   
proximately 800MB of XML documents in text format. The 
characteristics of this data set in terms of the number of 
occurrences of element tags are summarized in Table 1. 
 
 
We evaluated the various join algorithms using the set of 
queries shown in Table 1. The queries are broken up into two 
classes. QS1 to QS6 are simple structural relationship 
queries, and have an equal mix of parent-child queries and 
ancestor descendant queries. QC1 and QC2 are complex 
chain queries, and are used to demonstrate the performance of 
the algorithms when evaluating complex queries with 
multiple joins in a pipeline. 

 
A. Detailed Implementation: 

The focus in the experiments is to characterize the 
performance of the four structural join algorithms, and 
understand their differences. Before doing so in the following 
subsections, we present here some additional detail regarding 
the manner in which these were implemented for the 
experiments reported. Our choice of implementation, on top 
of SHORE and TIMBER, was driven purely by the need for 
sufficient control the algorithms themselves could just as well 
have been implemented on many other platforms, including 
(as new join methods) on relational databases. 

  
All join algorithms were implemented using the 

operator iterator model [15]. In this model, each operator 
provides an open, next and close interface to other operators, 
and allows the database engine to construct an operator tree 
with an arbitrary mix of query operations (different join 
algorithms or algorithms for other operations such as 
aggregation) and naturally allows for a pipelined operator 
evaluation. To support this iterated model, we pay careful 
attention to the manner in which results are passed from one 
operator to another.  

 
Algorithms such as the TMJ algorithms may need to 

repeatedly scan over one of the inputs. Such repeated scans 
are feasible if the input to a TMJ operator is a stream from a 
disk file, but is not feasible if the input stream originates from 
another join operator (in the pipeline below it). We 
implemented the TMJ algorithms so that the nodes in a 
current sweep are stored in a temporary SHORE file. On the 
next sweep, this temporary SHORE file is scanned. This 
solution allows us to limit the memory used by TMJ 
implementation, as the only memory used is managed by the 
SHORE buffer manager, which takes care of evicting pages 
of the temporary file from the buffer pool if required. 
Similarly for the STJ-A algorithm, the inherit and self-lists 
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are stored in a temporary SHORE file, again limiting the 
memory used by the algorithm.  

 
In both cases, our implementation turns logging and 

locking off for the temporary SHORE files. Note that STJ-D 
can join the two inputs in a single pass over both inputs and 
never has to spool any nodes to a temporary file. 

 
<!ELEMENT manager 

(name,(manager|department|employee)+)> 
<! ATTLIST manager id CDATA #FIXED "1"> 
<!ELEMENT department (name, email?, 

employee+, department*)> 
<!ATTLIST department id CDATA #FIXED "2"> 
<!ELEMENT employee (name+,email?)> 
<!ATTLIST employee id CDATA #FIXED "3"> 
<!ELEMENT name (#PCDATA)> 
<!ATTLIST name id CDATA #FIXED "4"> 
<!ELEMENT email (#PCDATA)> 
<!ATTLIST email id CDATA #FIXED "5"> 

Figure.11. DTD used in our experiments 
 

 
Table 2 

 Description of queries and characteristics of the data set 
 
                            Node             Count 

 
Manager  25,880 
Department 342,450 
Employee  574,530 
Email   250,530 

 
Query XQuery Path  Expression Result 

QS1 
QS2 
QS3 
QS4 
QS5 

employee/email 
employee//email 
manager/department 
manager/department 
manager/employee 

140,700 
1 42,958 

6,855 
57,137 
7259 

QS6 manager/employee 0,774 
QC1 
QC2 

manager/employee/email   
manager/employee/email   

7990 
232,406 

 
To amortize the storage and access overhead 

associated with each SHORE object, in our implementation 
we group nodes into a large container object, and create a 
SHORE object for each container. The join algorithms write 
nodes to containers and when a container is full it is written 
to the temporary SHORE file as a SHORE record. The 
performance benefits of this approach are substantial; we do 
not go into details for lack of space. 
 
B.  STJ and TMJ, Simple Structural Join Queries 

Here, we compare the performance of the STJ and 
the TMJ algorithms using all the six simple queries, QS1–
QS6, shown in Table 1. Figure 12 plots the performance of 
the four algorithms. As shown in the Figure, STJ-D 
outperforms the remaining algorithms in all cases.  

 
The reason for the superior performance of STJ-D is 

because of its ability to join the two data sets in a single pass 
over the input nodes, and it never has to write any nodes to 
intermediate files on disk. From Figure 12(a), we can also see 
that STJ-A usually has better performance than both TMJ-A 
and TMJ-D. For queries QS4 and QS6, the STJ-A algorithms 
and the two TMJ algorithms have comparable performance. 

  
These queries have large result sizes (approximately 

600K and 1M tuples respectively as shown in Table 1). Since 
STJ-A keeps the results in the lists associated with the stack, 
and can output the results only when the bottommost element  
of the stack is popped, it has to perform many writes and 
transfers of the lists associated with the stack elements (in our 
implementation, these lists are maintained in temporary 
SHORE files). 
 

Furthermore, the effect of buffer pool size is likely 
to be critical when one of the inputs has nodes that are deeply 
nested amongst themselves, and the node that is higher up in 
the XML tree has many nodes that it joins with. For example, 
consider the TMJ-A algorithms, and the query 
“manager/employee”. If many manager nodes are nested 
below a manager node that is higher up in the XML tree, then 
after the join of the manager node at the top is done, repeated 
scans of the descendant nodes will be required for the 
manager nodes that are descendants of the manager node at 
the top. Such scenarios are rare in our data set, and, 
consequently, the buffer pool size has only a marginal impact 
on the performance of the algorithms. 
 
C.  Complex Queries 

Here, we evaluate the performance of the algorithms 
using the two complex chain queries, QC1 and QC2, from 
Table 1. Each query has two joins and for this experiment, 
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both join operations are evaluated in a pipeline. For each 
complex query one can evaluate the query by using only 
ancestor-based join algorithms or using only descendant-
based join algorithms. These two approaches are labeled with 
suffixes “-A2” and “-D2” for the ancestor-based and 
descendant-based approaches respectively.  

The performance comparison of the STJ and TMJ 
algorithms for both query evaluation approaches (A2 and D2) 
is shown in Figure 11. From the figure we see that STJ-D2 
has the highest performance once again, since it is never has 
to spool nodes to intermediate files.     

 
Figure.12(a). STJ and TMJ, simple queries:     QS1, QS6 

Matchings between pairs of trees in memory has 
been a topic of study in the algorithm community for a long 
time (e.g., see [22] and references therein). 

 
The algorithms developed deal with many variations 

of the problem but unfortunately are of high complexity and 
always assume that trees are entirely memory resident. The 
problem also has been considered in the programming 
language community, as it arises in various type checking 
scenarios but once again solutions developed are geared 
towards small data collections processed entirely in main 
memory. 

 
 

Figure.12(b). STJ and TMJ, complex queries:     QC1, 
QC2 

 Jacobson et al. [16] present linear time merging-
style algorithms for computing the elements of a list that are 
descendants/ancestors of some elements in a second list, in 
the context of focusing keyword-based searches on the Web 
and in UNIX-style file systems. Jagadish et al, [17] present 
linear time stack-based algorithms for computing elements of 
a list that satisfy a hierarchical aggregate selection condition 
wrt elements in a second list, for the directory data model. 
However, none of these algorithms compute joins results, 
which is the focus of our work.  

Join processing is central to database 
implementation and there is a vast amount of work in this 
area [15]. For inequality join conditions, band join [11] 
algorithms are applicable when there exists a fixed arithmetic 
difference between the values of join attributes. Such 
algorithms are not applicable in our domain as there is no 
notion of fixed arithmetic difference. In the context of spatial 
and multimedia databases, the problem of computing joins 
between pairs of spatial entities has been considered, where 
commonly the predicate of interest is overlap between spatial 
entities [18, 24, 19] in multiple dimensions.  

 
The techniques developed in this paper are related to 

such join operations. However, the predicates considered as 
well as the techniques we develop are special to the nature of 
our structural join problem. In the context of semistructured 
and XML databases, the issue of query evaluation and 
optimization has attracted a lot of research attention. In 
particular, work done in the context of the Lore database 
management system [20, 21], and the Niagara system [23], 
has considered various aspects of query processing on such 
data. XML data and various issues in their storage as well as  
query processing using relational database systems have 
recently been considered in [14, 27, 26, 4, 13]. In [14, 27, 
13], the mapping of XML data to a number of relations was 
considered along with translation of a select subset of XML 
queries to relational queries. In subsequent work [26, 4, 12], 
the authors considered the problem of publishing XML 
documents from relational databases.  
 

Our work is complementary to all of these since our 
focus is on the join algorithms for the primitive (ancestor-
descendant and parentchild) structural relationships. Our join 
algorithms can be used by these previous works to advantage. 
The representation of positions of XML elements used by us, 
(DocId, StPos : EPos, LevelNo), is essentially that of 
Consens and Milo, who considered a fragment of the PAT 
text searching operators for indexing text databases [9], This 
representation was used to compute containment relationships       
between “text regions” in the text databases. The focus of that 
work was solely on theoretical issues, without elaborating on 
efficient algorithms for computing these relationships. 

 
Finally, the recent work of Zhang et al. [29] is 

closely related to ours. They proposed the multi predicate 
merge join (MPMGJN) algorithm for evaluating containment 
queries, using the (DocId, SPos: EPos, LevelNo) 
representation.  The MPMGJN algorithm is a member of our 
Tree-Merge family. Our analytical and experimental results 
demonstrate that the Stack-Tree family is considerably 
superior to the Tree-Merge family for evaluating containment 
queries. 
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6. CONCLUSIONS 
Now, We have identified a large optimal query 

classes namely that is Z\,\\,α; Z\,\\,α,β and Z\,\\,α,β,γ 
respectively and We have introduced a notion of matching 
cross to address the problem of the suboptimality in holistic 
XML clustering tree pattern matching algorithms. Based on 
these results, we have planned a new holistic algorithm called 
TreeMatch to achieve such abstract optimal query classes. 
Finally, general experiments demonstrate the advantage of 
our algorithms and verify the accuracy of abstract results. 
 
 
REFERENCES 
1. Boukottaya, C. Vanoirbeek, Schema matching for 

transforming structured documents,The 2005 ACM 
Symposium on Document engineering, Bristol, United 
Kingdom. 

2. G.Koloniari, E. Pitoura, Peer-to-peer       management of 
XML data, issues and       research challenges, SIGMOD 
Record 34 (2)       (2005) 6–17. 

3. R. Nayak, R. Witt, A. Tonev, Data mining       and XML 
documents, The 2002 International       Workshop on the 
Web and Database       (WebDB 2002), June 24–27, 
2002. 

 
4. R. Nayak, M. Zaki (Eds.), Knowledge       discovery 

from XML documents, PAKDD       2006 workshop 
proceedings,Lecture Notes in       Computer Science, vol. 

5. D.D. Chamberlin, J. Robie, and D. Florescu.      Quilt:An 
XML query language for       heterogeneous data sources. 
In Proceedings       of WebDB, 2000. 

6. N. Jardine, C.J. van Rijsbergen, The use of        
hierarchical clustering in information    retrieval, 
Information storage and retrieval      7(1971) 217–240. 

7. M.P. Consens and T. Milo. Algebras for       querying 
text regions. In Proceedings of PODS,  1995. 

8. M. Hearst, J.O. Pedersen, Reexamining the       cluster 
hypothesis: Scatter/gather on retrieval       results, 
Proceedings of the ACM SIGIR   Conference, Zurich, 
Switzerland, 1996, pp. 76–84. 

9. E.Rasmussen, Clustering algorithms, W.       Frakes, R. 
Baeza-Yates (Eds.), Information       Retrieval: Data 
Structures and Algorithms,       Prentice Hall, 1992.  

10. M. Halkidi, Y. Batistakis, M. Vazirgiannis,       
Clustering algorithms and validity measures,       
SSDBM Conference, Virginia, USA, 2001.  

11. T. Fiebig and G. Moerkotte. Evaluating queries on 
structure with access support relations. Proceedings of 
WebDB, 2000.  

12. D. Florescu and D. Kossman. Storing and       querying 
XML data    using an RDMBS. IEEE       Data 
Engineering Bulletin, 22(3):27–34,       1999.  

13. G. Graefe. Query evaluation techniques for           large 
databases.   ACM Computing Surveys,  25(2), 1993.  

14. G. Jacobson, B. Krishnamurthy     ,D.      Srivastava, and 
D. Suciu. Focusing search in       hierarchical structures 
with directory sets. In  Proceedings of CIKM, 1998.  
 
 

1N.Kannaiya Raja received degree MCA from Alagappa 
University and ME from Anna University Chennai in 2007 

joined assistant professor various 
engineering colleges in Tamil Nadu 
affiliated to Anna University and has 
eight years teaching experience and his 
research works in deep packet 
inspection. He has been session chair in 
major conference and workshops in   
computer vision on algorithm papers, 
network, mobile communication, 

image processing papers and pattern reorganization. His 
current primary areas of research are packet inspection and 
network. He is interested to conduct guest lecturer in various 
engineering in Tamil Nadu. 
 
2Dr.K.Arulanandam received PhD doctorate degree in 2010 
from Vinayaka mission university Salem. He has twelve year 
teaching experience in various engineering colleges in Tamil 
Nadu which are affiliated to Anna University and his research 
experience network, mobile communication networks, image 
processing papers and algorithm papers 
 
 
3P.Umadevi received degree BE  from  Madras in  2001 and 
M.E from Anna University Chennai in 2008 joined assistant 

professor in various engineering 
colleges in Tamil Nadu affiliated to 
Anna University and has six years 
teaching experience and her research 
works in Cryptography. His current 
primary areas of research are packet 
inspection and network. She is interested 
to conduct conference and guest lecturer 

in various engineering in Tamil Nadu. 
 
4 A.Balakrishnan received degree B.E Computer Science and 
Engineering from Anna University Chennai. Now pursuing 

ME Computer Science and Engineering 
in Arulmigu Meenakshi Amman College 
of Engineering affiliated to Anna 
University Chennai. 


