
 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

1

A Novel XML Documents Using Clustering Tree Pattern Algorithms

1N.Kannaiya Raja, M.E., (P.hd),2Dr. K.Arulanandam, Prof and Head,3P. Umadevi, M.E.,(A/P), 4A.Balakrishnan, M.E
CSE Department

Arulmigu Meenakshi Amman College of Engg, Thiruvannamalai Dt, India
kanniya13@hotmail.co.in

sathisivamkva@gmail.com
umasri05@yahoo.co.in

drbalaphd1687@yahoo.com

Abstract

 In a business enterprises generate and exchange
XML data, are used more often for increasing the
demand of efficient processing of queries on the XML.
The searching for the occurrences of tree pattern query
are on XML database is a core operation in XML query
process which meets more problems in holistic algorithm,
also demonstrated is an efficient technique to suggest
XML-tree pattern with parent-child operations. However,
XML query have more functions such as negation
function, order based axis, and wildcards and also
created and invented extended XML tree pattern
matching have implement a good relationship between
negation function, wildcards function and ordered
restriction. In this paper, we research a large set of xml
clustered tree pattern which may have parent-child
relation on top-down approach. We also established
framework on multiple matching pattern with strong
demonstrate for proof of multiple holistic algorithm based
on our theorem, we proposed a set of efficient process for
three categories of xml clustering pattern algorithms set of
experiment on both real life and synthetic dataset
demonstrated with effectiveness and efficiency of our
proposed theory of algorithms. Index term:
Algorithm, XML, Clustering tree pattern, Query processing.

1. INTRODUCTION

The growing important of XML data more often
inducing the needs for efficient process of XML clustering
pattern algorithm on xml data. XML clustering pattern
commonly represented has a rooted, labeled XML query tree
are used in the XML data for example, Xpath query. The
effective matching of XML clustering pattern algorithm has
more often as multi operation in XML query processing. In
particular, a stack-based algorithm to match binary structural
relationship including parent-child (P-C) and ancestor-
descendant (A-D) relationship. The limitation of parent-child
and ancestor-descendant relationship is the size of
intermediate results may become very large, even if the final
results are small. A novel holistic Twig join algorithm named
twigstack, Twigstack guarantees there are no “useless”
intermediate requests for queries with only (A-D)
relationship. In recent works that examine how to enlarge the
query class of holistic algorithm. These algorithms have

proven highly promising and make their way into XML query
processing.

 XML clustering pattern algorithm with XML query that
prior algorithm focus on XML clustering pattern queries with
only (P-C) and (A-D) relationships. The small works are done
on XML clustering queries which may contain wildcards,
negation function and order restriction. All of the functions
used in the XML query language such as Xpath and Xquery.

 In this paper, we have call an XML clustering pattern
algorithm with XML query which include negation function,
wildcards and order restriction as extended XML clustering
patterns. Query (a) include a wildcard node such as "α”,
which can match any single node in an XML database. Query
(b) which can include a negative edge, denoted by” β “. This
query finds out the "A" that has a child "B", but has no child
"C".

In Xpath language, the negative edge can be
represented by "not" Boolean function. Query(C) it has the
order restriction, it is equal to an “Xpath” the "γ" shows in a
children under 'A' are ordered. Finally (d) which is very
complexity, which contains wildcards, negation form and
order restriction. Opmality of the holistic algorithm prior
XML clustering pattern algorithm with XML query do not
completely exploit the "optimality" of the holistic algorithms.
Twistack which guarantees for very useful intermediate
result for the queries with only A-D relationship. Another
algorithm twigstack list which enlarges the optimal query
class of the twigstack by including P-C relationship. Another
important question is whether twigstack list can be improved
(or) not. Hence, the current problem which includes how to
find a large query class which can be processed optimally and
also how to effectively answer a query which cannot be
guaranteed to process optimally.

 Notify that prior works is no algorithm is optimal for
queries with (A-D) and (P-C) relationship. In this paper, to
explore the framework called “matching” to find out the large
optimal query class. Twig pattern queries that the practical
application is only part of query nodes belong to the return
nodes called output nodes. Take the Xpath “\\A [B]\\C” as an
example, only 'C' elements and its sub tree are answers. In
this paper, we have to develop a new encoding method to file

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

2

the mapping relationship and avoid output non return nodes.
Main result that in general, it has given an extended XML
clustering pattern algorithm which may include (P-C, A-D)
relationship, Order restriction, negation function and
wildcards. We have to consider the problem effectively
matching the extended XML clustering pattern algorithm.
The main theme of our algorithm is to identifying a large
queries class which can be optimally processed. Like existing
papers on XML Tree pattern matching. But in this paper, we
can calculate a holistic algorithm “optimal" for the different
kind of query class. If it guarantees that output.

Optimality of holistic algorithm that prior XML
clustering pattern algorithms with XML query do not
completely exploit the "optimality” of holistic algorithms.
Twigstacks which guarantees for very useful intermediate
result for queries with only (A-D) relationship. Another
algorithm twig stack list which enlarges the optimal query
class of twig stack by including (P-C) relationship. Another
important question is whether twigstack list can be improved
(or) not. Hence the current problem which includes how to
find a large query class which can be processed optimally and
also how to effectively answer a query which cannot be
guaranteed to process optimally. Notify that prior works if
there is no algorithm is optimal for queries with (A-D) and
(P-C) relationship. In this paper, to explore the framework
called “matching" to find out the large optimal query class.

 Intermediate results contribute to final result. We

can find out the 3 categories of extended XML clustering
pattern algorithm (1) queries with (P-C) , (A-D) relationship,
wildcards and order restriction, denoted as Z\,\\,α; and (2)
queries with (P-C),(A-D) relationship, wildcard, and order
restriction, denoted as Z\,\\,α,β; and (3) queries like (P-C) ,
(A-D) relationships, wildcard, negation functions denoted as
Z\, \\,α,β,γ. For each category we have to find out the
respective optimal query class.
The technical contribution of this paper is summarized as
follows:
 We have created a theoretical framework on optimal

processing of XML clustering pattern queries. We can
show that “Matching" is the key of result in the sub
optimality of the holistic algorithm. Twigstack is a fact
that optimal for queries with only (A-D) relationship can
be explained that no matching cross can be found for any
XML document.

 Based upon our theoretical analysis, we can create a
series of holistic algorithm match to achieve a large
optimal query class for '3'categories of queries (i.e.\, \\, α;
Z\, \\, α, β; and Z\, \\, α, β, γ).

 We conducted a set of synthetic and real data set for
performance comparison. We compared true match with
prior four holistic XML clustering pattern matching
algorithms with XML query. The results show that our
algorithm can correctly process extended XML

clustering pattern. We can develop mainly for the
reduction in the site of the intermediate results.

 The Extensible Markup Language (XML) has become a
standard for data representation. With the continuous growth
in the XML data, the ability to manage massive collections of
XML data and to discover knowledge from them becomes
essential for the Web-based information systems [4,6]. A
possible solution is to group the similar XML data based on
their context and structure. The clustering of XML data
facilitates a number of advanced applications such as
improved information retrieval, data and schema integration,
document classification analysis, structure summary and
indexing, and query processing and optimization [3,5]. In this
paper we define a new method for computing the similarity
between any two XML documents in terms of their structure.
The higher this similarity, the more similar the two
documents are in terms of structure, and the more likely they
are to have been created from the same DTD.

Crafting a good similarity metric for this setting is
somewhat difficult since two documents created from the
same DTD can have radically different structures (due to
Nesting and repeating elements), but we would still want to
compute a higher similarity between these documents. We
account for this by introducing Nesting reduction and
repeating reduction method in all sections of the document.
Using our resulting Weight Edge-set similarity comparison
(WESC) measure, we show that standard clustering
algorithms do very well at pulling together documents
derived from the same DTD.

 Outline that the remaining paper shows the preliminaries
about research problem and processing modal. Section (3)
gives the set if theories about matching cross and Section (4)
give the extended XML clustering pattern algorithm called
tree match. Section (5) presents experimental studies b/w the
novel algorithm and existing method. Finally, section (6)
gives existing work related on the XML clustering pattern
algorithm.

2. RELATED WORKS

A. Clustering XML PATTERN

We have to be deal with the problem of clustering
XML documents using such as namely (1) the XML
structural is ordered labeled trees, (2) similarity calculated
from these tree and (3) clustering algorithms. Clustering
methods are divided into mainly two types. Hierarchical and
Non-hierarchical methods. A non-hierarchical method which
consists of data set into a number of clusters. Hierarchical
methods provide a nested sets of data in which pairs of
elements or clusters are connected successively until every
element in the data set becomes linked. Nonhierarchical
methods are low computational requirements because the

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

3

value is (O (kn) for example n records need to be grouped
into k clusters, the parameters like the number of formed
clusters are known as priori. Hierarchical methods are
computationally expensive because the value is O (n2) and n
documents need to be clustered. The hierarchical methods are
used to increasing the effectiveness and efficiency of
recovery [8–10]. The wide ranging of clustering methods you
can refer to [11，12]. In this paper, we have to select the
Hierarchical methods.

B. Clustering experimental
We have to test the performance of overall quality of

the clustering results using Artificial and original data. In
which original data are used records from the ACM
SIGMOD database, which depends on three DTDS. Artificial
XML records are generated by using IBM’s Alpha Works
XML generator, which is depends on six DTDS. All the
experiments are performed on a PC, Pentium(R) D 2.80GHZ,
1.24GB RAM, using the HTML programming language.
Figure 1 presents the structure of the programme. We have to
show the result on Table 1 based upon on the nine DTDS.
In general, at each node in the query tree pattern, that
specifies the node predicate on the attributes e.g., tag.

Figure.1.Programme structure

Using WESC and the type of Selkow. From the
result we can see WESC development accuracy on the
clustering. The overall performance on the time cost, mainly
for the large XML documents.

Table 1
Experimental result

Number of docs 1150 1150 930 930

Number of
DTDS

9 9 9 9

Average size 0.83kb 0.83kb 4.2kb 4.2kb
algorithm WESC selkow WESC selkow
Number of
clustering

9 9 9 9

Accuracy rate 0.975 0.873 0.949 0.812

Recall rate 0.978 0.881 0.937 0.911

Time
consuming

5.3s 9.8s 8.2s 14.6s

C. Data Model and Query Patterns

Node labels are a set of attribute and value pairs,
which suffices to form tags, PCDATA content, etc. The XML
database consisting of the ordered, labeled trees and rooted
forest, each node representing the element and the edges
corresponding element-Subelement relationships.

From the sample XML document of Figure 2 and its

tree representation is shown in Figure 3. Queries in XML
query languages like XQuery, Quilt [7], and XML-QL make
fundamental use of node labeled tree patterns for matching
related portions of data in the XML database. The query
pattern labels which consists of element tags, attribute-value
comparisons and string values, and the query pattern edges
which include the parent-child edges “using sole line” or
ancestor-descendant edges “using a dual line”. For example,
the XQuery path looks in the represented of the embedded
tree pattern in Figure 3(a). This query pattern would match
the document in Figure 2. In general, at each node in the
query tree pattern, that specifies the node predicate on the
attributes e.g., tag, content of the node .In this paper, exactly
what is permitted in this predicate is not material. The well-
organized access of mechanism that constructing the suffices
such as index structures to find the XML database nodes
which satisfies the predicate nodes.

D. Matching Basic Structural Relationships

The query pattern can be matched by (i) binary
structural relationship should be matched against to the XML
database, and (ii) “stitching” collectively these basic matches.
A difficult query tree pattern decomposed into a basic binary
structural relationship such as parent-child and ancestor-
descendant between relationships of nodes. For example, the
basic structural relationships matching to the query tree
pattern of Figure 3(a) are shown in Figure 3(b).

A structural relationships should match the

straightforward approach against an XML database is to use
traversal-style algorithms by using child-pointers or parent-
pointers. Such “tuple-at-a-time” processing strategies are
known to inefficient compared to the set-at-a-time strategies
used in database systems. Pointer-based joins have been
optional solution to this problem in object-oriented databases
and shown as quite well-organized.

In the framework of XML databases which may

have a large number of children nodes and the query pattern
are often to the matching ancestor-descendant structural
relationships (for example, the (book, author) edge in the
query pattern of Figure 4, in addition to parent-child
structural relationships. In this case, there are two options: (i)
explicitly maintaining only (parent, child) node pairs and
identifying (ancestor, descendant) node pairs through
repeated joins; or (ii) explicitly maintaining (ancestor,

 Output

Structural
summary
extractor

Wise
structural
distance

Output

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

4

descendant) node pairs. A large amount of query processing
time would have to use the previous approach, although the
later approach would take to use a

<book>
<title> XML < =title>
<all authors>

<author> jane < =author>
<author> john < =author>

< =all authors>
<year> 2000 < =year>
<Chapter>

<head> Origins < =head>
<Section>

<head> ...< =head>
 <section> ...< =section>
 < =section>
 <section> ...< =section>
 < =chapter>
<chapter> ...< =chapter>

< =book>

Figure. 2. Sample XML document

 Figure .3.Tree representation

Figure .4. Structural relationships

much quadratic space. In also using pointer-based joins is
likely to be infeasible.

E. Representing Positions of Elements and String Values in
an XML Database:

The well-organized key to an uniform mechanism
for set-at-a-time (join-based) matching of structural
relationship is a positional representation of occurrences of
XML elements and string values in the XML database e.g.,
[9, 29], which extend the classic reversed index data structure
in information recovery .

The element of an XML database is occurrence by

the represented as the 3-tuple DocId, SPos : EPos, LevelNo,
and the location of a string occurance in the XML database
can be represented as the 3-tuple DocId, SPos, LevelNo,
where (i) DocId is the identifier of the document; (ii) SPos
and EPos can be created by counting word numbers from the
beginning of the document with identifier DocId awaiting the
start of the element and end of the element respectively and
(iii) LevelNo is the nesting depth of the element in the text.
Figure 3 depict a 3- tuple with each tree node, based on this
representation of location. (A node from these Docld is
chosen by 1).

Structural relationships between tree nodes both

elements or string values whose position are recorded in this
method can be determined easily: (i) ancestor-descendant: a
tree node n2 whose location in the XML database is
programmed as (D2; S2 : E2;L2) is a descendant of a tree
node n1 whose location is programmed as (D1; S1 : E1;L1)
iff D1 = D2; S1 < S2 and E2 < E1;1 (ii) parent-child: a tree
node n2 whose location in the XML database is programmed
as (D2; S2 : E2;L2) is a child of a tree node n1 whose
location is programmed as (D1; S1 : E1; L1) iff D1 = D2; S1
< S2;E2 < E1,and L1 +1 = L2.

Figure 2 is indicated by example of the author node

position is (1;6 : 8; 3) is a descendant of the book node with
position is (1;1 : 70; 1), and the string “jane” with location (1;
7; 4) is a author node child with location (1;6 : 8; 3). A
solution point value note that representation of node position
in the XML data tree is that inspection an ancestordescendant
structural relationship is as simple as inspection a parentchild
structural relationship.

The motive is that one can test for an ancestor-

descendant structural relationship without knowledge of the
intermediate nodes on the path. Also significance noting but
this representation of position of elements and string values
permit for inspection order and proximity relationships
between elements and/or string values, the main issue of
these paper is not explored further.

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

5

3. CONSTRUCTION

In the rest of this paper, we take advantage of the
(DocId, SPos: EPos, LevelNo) representation of positions of
XML elements and string values to (i) devise novel, I/O and
CPU optimal (in an asymptotic sense) join algorithms for
matching basic structural relationships (or, containment
queries) against an XML database; (ii) present an analysis of
these algorithms; and (iii) show their behavior in practice
using a variety of experiments. The task of matching a
complex XML clustering query pattern then reduces to that of
evaluating a join expression with one join operator for each
binary structural relationship in the query pattern. Different
join orderings may result in different evaluation costs, as
usual. Finding the optimal join ordering is outside the scope
of this paper, and is the subject of future work in this area.
1For leaf strings, EPos is the same as SPos.

 Algorithm Tree-Merge-Anc (AList, DList)
 All nodes in AList and DList have the same DocId

AList is the list of potential ancestors, in sorted order of
SPos

 DList is the list of potential descendants in sorted order
of SPos

 Desc-init = DList->FNode; OutputList = NULL;
for (a = AList->FNode; a ! = NULL; a = a->NxtNode) {
 for (d = init-desc; (d ! = NULL and d.SPos < a.SPos); d = d-
>NxtNode) {

/* unmatchable d’s */}
 Desc-init = d;
 for (d = init-desc; (d ! = NULL and and d.EPos < a.EPos); d
= d->NxtNode){

if ((a.SPos < d.SPos) and (d.EPos < a.EPos)
 [and (d.Levelno = a.LevelNo + 1)])

}
}
 Condition for parent-child relationships

{
append (a,d) to OutputList;
}

Figure.5. Algorithm Tree-Merge-Anc with output in

sorted ancestor/parent order

A. P-C and A-D Algorithms

In this section, we develop two families of join
algorithms for matching parent-child and ancestor-descendant
structural relationships efficiently: tree-relation and stack-
tree, and present an analysis of these algorithms.

Consider an ancestor-descendant (or, parent-child)
structural relationship (e1; e2), for example, (book, author)
(or, (author, Jane)) in our running example. Let AList = [a1;
a2; : : :] and DList = [d1; d2; : : :] be the lists of tree nodes
that match the node predicates e1 and e2, respectively, each
list sorted by the (DocId, SPos) values of its elements. There

are a number of ways in which the AList and the DList could
be generated from the database that stores the XML data. For
example, a native XML database system could store each
element node in the XML data tree as an object with the
attributes: ElementTag, DocId, SPos, EPos, and LevelNo.

 An index could be built across all the element tags,

which could then be used to find the set of nodes that match a
given element tag. The set of nodes could then be sorted by
(DocId, SPos) to produce the lists that serve as input to our
join algorithms. Given these two input lists, AList of
potential ancestors (or parents) and DList of potential
descendants (resp, children), the algorithms in each family
can output a list OutputList = [(ai; dj)] of join results, sorted
either by (DocId, ai.SPos, dj.SPos) or by (DocId, dj.SPos,
ai.SPos). Both variants are useful, and the variant chosen may
depend on the order in which an optimizer chooses to
compose the structural joins to match the complex XML
query pattern.

B. Tree Relationship Join Algorithms

The algorithms in the tree-relation family are a
natural extension of traditional relational merge joins (which
use an equality join condition) to deal with the multiple
inequality conditions that characterize the ancestor-
descendant or the parent-child structural relationships, based
on the (DocId, SPos: EPos, LevelNo) representation. The
recently proposed multi-predicate merge join (MPMGJN)
algorithm [29] is also a member of this family. The basic idea
here is to perform a modified merge-join, possibly
performing multiple scans through the “inner” join operand to
the extent necessary. Either AList or DList can be used as the
inner (resp., outer) operand for the join: the results are
produced sorted (primarily) by the outer operand. In Figure 5,
we present the tree-merge algorithm for the case when the
outer join operand is the ancestor; this is similar to the
MPMGJN algorithm. Similarly, Figure 6 deals with the case
when the outer join operand is the descendant. For ease of
understanding, both algorithms assume that all nodes in the
two lists have the same value of DocId, their primary sort
attribute. Dealing with nodes from multiple documents is
straightforward, requiring the comparison of DocId values
and the advancement of node pointers as in the traditional
merge join.

C. An Analysis of the Tree-Merge Algorithms

Traditional merge joins that use a single equality
condition between two attributes as the join predicate can be
shown to have time and space complexities O(jinputj +
joutputj), on sorted inputs, while producing a sorted output.
In general, one cannot establish the same time complexity
when the join predicate involves multiple equality and/or
inequality conditions. In this section, we identify the criteria
under which tree-merge algorithms have asymptotically
optimal time complexity.

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

6

Algorithm Tree-Merge-Anc for ancestor-descendant
Structural Relationship:

Theorem .1 The space and time complexities of Algorithm
Tree-Merge-Anc are O (jAListj+jDListj Output Listj),for the
ancestor-descendant structural relationship.

The intuition is as follows. Consider first the case
where no two nodes in AList are themselves related by an
ancestordescendant relationship. In this case, the size of
OutputList is O(jAListj + jDListj). Algorithm Tree-Merge-
Anc makes a
Algorithm Tree-Merge-Desc (AList, DList)
 Assume that all nodes in AList and DList have the same

DocId
 AList is the list of potential ancestors, in sorted order of

SPos
 DList is the list of potential descendants in sorted order

of SPos
init-anc = AList->FNode; OutputList = NULL;
for (des = DList->FNode; des ! = NULL; des = des->NNode)
{
 for (anc = init-anc; (anc ! = NULL and anc.EPos <
des.SPos); anc = anc->NxtNode) {

/* unmatchable a’s */}
 init-anc = anc;
 for (anc = init-anc; (anc ! = NULL and anc.SPos <
anc.SPos); anc = anc->NxtNode)
{

if ((anc.SPos < des.SPos) and (des.EPos < anc.EPos)
[and (des.LevelNo = anc.LevelNo + 1)]) {

 the condition is for parent-child relationships
 append (anc,des) to OutputList; }

}
}

Figure.6. Algorithm Tree-Merge-Desc with output in
sorted descendant/child order

Single pass over the input AList and at most two passes over
the input DList.2 Thus, the above theorem are satisfied in this
case.

Consider next the case where multiple nodes in
AList are themselves related by ancestor-descendant
relationship. This can happen, for example, in the (section,
head) structural relationship for the XML data in Figure 4. In
this case, multiple passes may be made over the same set of
descendant nodes in DList, and the size of OutputList may be
O (jAListj _ jDListj), which is quadratic in the size of the
input lists. However, we can show that the algorithm still has
optimal time complexity, i.e., O (jAListj + jDListj +
jOutputListj). One cannot establish the I/O optimality of
Algorithm Tree-Merge-Anc. In fact, repeated paging can
cause its I/O behavior to degrade in practice, as we shall see
in Section 4.

Algorithm Tree-Merge-Anc for parent-child Structural
Relationship:

When evaluating a parentchild structural
relationship, the time complexity of Algorithm Tree-Merge-
Anc is the same as if one were performing an ancestor-
descendant structural relationship match between the same
two input lists. However, the size of OutputList for the
parent-child structural relationship can be much smaller than
the size of the OutputList for the ancestor-descendant
structural relationship. In particular, consider the case when
all the nodes in AList form a (long) chain of length n, and
each node in AList has two children in DList, one on either
side of its child in AList; this is shown in Figure 7(a). In this
case, it is easy to verify that the size of OutputList is
O(jAListj + jDListj), but the time complexity of Algorithm
Tree-Merge-Anc is O((jAListj + jDListj)2); the evaluation is
pictorially depicted in Figure 6(b), where each node in AList
is associated with the sublist of DList that needs to be
scanned. The I/O complexity is also quadratic in the input
size in this case.

Algorithm Tree-Merge-Desc: There is no analog to Theorem
1 for Algorithm Tree-Merge-Desc, since the time 2A clever
implementation that uses a one node look ahead in AList can
reduce the number of passes over DList to just one.
Complexity of the algorithm can be ((jAListj + jDListj +
jOutputListj) 2) in the worst case. This happens, for example,
in the case shown in Figure 7(c), when the first node in AList
is an ancestor of each node in DList. In this case, each node
in DList has only two ancestors in AList, so the size of
OutputList is O(jAListj + jDListj), but AList is repeatedly
scanned, resulting in a time complexity of
O(jAListj_jDListj); the valuation is depicted in Figure 7(d),
where each node in DList is associated with the sublist of
AList that needs to be scanned. While the worst case
behavior of many members of the treemerge family is quite
bad, on some data sets and queries they perform quite well in
practice. We shall investigate the behavior of Algorithms
Tree-Merge-Anc and Tree-Merge-Desc experimentally in
Section 4.

D. Stack-Tree Join Algorithms

We observe that a depth-first traversal of a tree can
be performed in linear time using a stack of size as large as
the height of the tree. In the course of this traversal, every
ancestor-descendant relationship in the tree is manifested by
the descendant node appearing somewhere higher on the
stack than the ancestor node. We use this observation to
motivate our search for a family of stack based structural join
algorithms, with better worst-case I/O and CPU complexity
than the tree-merge family, for both parent-child and
ancestor-descendant structural relationships.

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

7

Unfortunately, the depth-first traversal idea, even
though appealing at first glance, cannot be used directly since
it requires traversal of the whole database. We would like to
traverse only the candidate nodes provided to us as part of the
input lists. We now describe our stack-tree family of
structural join algorithms; these algorithms have no
counterpart in traditional join processing.

E. Stack-Tree-Desc

Consider an ancestor-descendant structural
relationship (e 1; e2). Let AList = [a1; a2; : : :] and DList =
[d1; d2; : : :] be the lists of tree nodes that match node
predicates e 1 and e2, respectively, sorted by the (DocId,
SPos) values of its elements.

Figure.7. (a), (b) Worst case for Tree-Merge-Anc and (c),

(d) Worst case for Tree-Merge-Desc

We first discuss the stack-tree algorithm for the case
when the output list [(ai; dj)] is sorted by (DocId, dj.SPos,
ai.SPos). This is both simpler to understand and extremely
efficient in practice. The algorithm is presented in Figure 5
and 6 for the ancestor-descendant case.

The basic idea is to take the two input operand lists,
AList and DList, both sorted on their (DocId, SPos) values
and conceptually merge (interleave) them. As the merge
proceeds, we determine the ancestor-descendant relationship,
if any, between the current top of stack and the next node in
the merge, i.e., the node with the smallest value of SPos.
Based on this comparison, we manipulate the stack, and
produce output.

The stack at all times has a sequence of ancestor

nodes, each node in the stack being a descendant of the node
below it. When a new node from the AList is found to be a
descendant of the current top of stack, it is simply pushed on
to the stack. When a new node from the DList is found to be
a descendant of the current top of stack, we know that it is a

descendant of all the nodes in the stack. Also, it is guaranteed
that it won’t be a descendant of any other node in AList.
Hence, the join results involving this DList node with each of
the AList nodes in the stack are output. If the new node in the
merge list is not a descendant of the current top of stack, then
we are guaranteed that no future node in the merge list is a
descendant of the current top of stack, so we may pop stack,
and repeat our test with the new top of stack. No output is
generated when any element in the stack is popped.

The parent-child case of Algorithm Stack-Tree-Desc

is even simpler since a DList node can join only (if at all)
with the top node on the stack. In this case, the “for loop”
inside the “else” case of Figure 8 needs to be replaced with:

if (d.LevelNo = stack->top.LevelNo + 1) append
(stack->top,d) to OutputList

Example 3.1 [Algorithm Stack-Tree-Desc]

Some steps during an example evaluation of
Algorithm Stack-Tree-Desc, for a parent-child structural
relationship, on the dataset of Figure 9(a), are shown in
Figures 9(b)–(e). The ai’s are the nodes in AList and the dj’s
are the nodes in DList. Initially, the stack is empty, and the
conceptual merge of AList and DList is shown in Figure 9(b).
In Figure 9(c), a1 has been put on the stack, and the first new
element of the merged list, d1, is compared with the stack top
(at this point (a1; d1) is output).

Figure 9(d) illustrates the state of the execution

several steps later, when a1; a2; : : : ; an are all on the stack,
and dn is being compared with the stack top (after this point,
the OutputList includes (a1; d1); (a2; d2); : : : ; (an; dn)).
Finally, Figure 9(e) shows the state of the execution when the
entire input has almost been processed. Only a 1 remains on
the stack (all the other ai’s have been popped from the stack),
and d2n is compared with a1. Note that all the desired
matches have been produced while making only a single pass
through the entire input. Recall that this is the same dataset of
Figure 7(a), which illustrated the sub-optimality of Algorithm
Tree-Merge-Anc, for the case of parent-child structural
relationships.

F. Stack-Tree-Anc

We next discuss the stack-tree algorithm for the case
when the output list [(ai; dj)] needs to be sorted by (DocId,
ai.SPos, dj.SPos).

It is not straightforward to modify Algorithm Stack-

Tree-Desc to produce results sorted by ancestor because of
the following: if node a from AList on the stack is found to
be an ancestor of some node d in the DList, then every node
a0 from AList that is an ancestor of a (and hence below a on
the stack) is also an ancestor of d. Since the SPos of a0
precedes the start position of a, we must delay output of the

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

8

join pair (a; d) until after (a0; d) has been output. But there
remains the possibility of a new element d0 after d in the
DList joining with a0 as long a0 is on stack, so we cannot
output the pair (a; d) until the ancestor node a0 is popped
from stack. Mean while, we can build up large join results
that cannot yet be Algorithm Stack-Tree-Desc (AList, DList)
/* Assume that all nodes in AList and DList have the same
DocId */
 AList is the list of potential ancestors, in sorted order of

SPos
 DList is the list of potential descendants in sorted order

of SPos
anc = AList->FNode; des = DList->FNode; OutputList =
NULL;
While (the input lists are not empty or the stack is not empty)
{

if ((anc.SPos > stack->top.EPos) and (des.SPos >
stack->top.EPos)) {

/* time to pop the top element in the stack
*/

tuple = stack->pop (); }
 else if (anc.SPos < des.SPos) {

stack->push(a)
anc = anc->NxtNode }

else {
for (anc1 = stack->bottom; anc1 ! = NULL;

anc1 = anc1->up) {
 append (anc1,des) to OutputList

}
des = des->NNode

}

}

Figure.8. Algorithm Stack-Tree-Desc with output in
sorted descendant order output. Our solution to this

problem is described in Figure 9 for the ancestor-
descendant case.

As with Algorithm Stack-Tree-Desc, the stack at all
times has a sequence of ancestor nodes, each node in the
stack being a descendant of the node below it. Now, we
associate two lists with each node on the stack: the first,
called self-list is a list of result elements from the join of this
node with appropriate DList elements; the second, called
inherit-list is a list of join results involving AList elements
that were descendants of the current node on the stack. As

before, when a new node from the AList is found to be a
descendant of the current top of stack, it is simply pushed on
to the stack. When a new node from the DList is found to be
a descendant of the current top of stack, it is simply added to
the self-lists of the nodes in the stack.

Again, as before, if no new node (from either list) is
a descendant of the current top of stack, then we are

guaranteed that no future node in the merge list is a
descendant of the current top of stack, so we may pop stack,
and repeat our test with the new top of stack. When the
bottom element in stack is popped, we output its self-list first
and then its inherit-list. When any other element in stack is
popped, no output is generated. Instead, we append its
inherit-list to its self-list, and append the result to the inherit-
list of the new top of stack.

 An optimization to the algorithm (incorporated in

Figure 9) is as follows: no self-list is maintained for the
bottom node in the stack. Instead, join results with the bottom
of the stack are output immediately. This results in a small
space savings, and renders the stack-tree algorithm partially
non-blocking.

G. An Analysis of Algorithm Stack-Tree-Desc

Algorithm Stack-Tree-Desc is easy to analyze. Each
AList element in the input may be examined multiple times,
but these can be amortized to the element on DList, or the
element at the top of stack, against which it is examined.
Each element on the stack is popped at most once, and when
popped, causes examination of the new top of stack with the
current new element. Finally, when a DList element is
compared against the top element in stack, then it either joins
with all elements on stack or none of them; all join results are
immediately output. In other words, the time required for this
part is directly proportional to the output size. Thus, the time
required for this algorithm is O(jinputj + joutputj) in the
worst case. Putting all this together, we get the following
result:

Theorem.2 The space and time complexities of Algorithm
Stack-Tree-DescareO (jAListj+ jDListj + j outputListj), for
both ancestor-descendant and parent-child structural
relationships.

Further, Algorithm Stack-Tree-Desc is a non-blocking
algorithm.

Clearly, no competing join algorithm that has the
same input lists, and is required to compute the same output
list, could have better asymptotic complexity. The I/O
complexity analysis is straightforward as well. Each page of
the input lists is read once, and the result is output as soon as
it is computed. Since the maximum size of stack is
proportional to the height of the XML database tree, it is
quite reasonable to assume that all of stack fits in memory at
all time. Hence, we have the following result:

Theorem 3 The I/O complexity of Algorithm Stack-Tree-Desc
is O(jAListj B + jDListj B + jOutputListj B), for ancestor-
descendant and parent-child structural relationships, where
B is the blocking factor.

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

9

H. An Analysis of Algorithm Stack-Tree-Anc
The key difference between the analyses of

Algorithms Stack-Tree-Anc and Stack-Tree-Desc is that join
results are associated with nodes in the stack in Algorithm
Stack-Tree-Anc. Obviously, the list of join results at any
node in the stack is linear in the output size. What remains to
be analyzed is the appending of lists each time the stack is
popped.

If the lists are implemented as linked lists (with start
and end pointers), these append operations can be carried out
in unit time, and require no copying. Thus one comparison
per AList input and one per output are all that are performed
to manipulate stack. Combined with the analysis of
Algorithm Stack-Tree-Desc, we can see that the time required
for this algorithm is still O(jinputj + joutputj) in the worst
case. The I/O complexity analysis is a little more involved.
Certainly, one cannot assume that all the lists of results not
yet output fit in memory. Careful buffer management is
required. It turns out that the only operation we ever perform
on a list is to append to it (except for the final read out).

Figure.9. (a) Dataset (b)–(e) Steps during evaluation of

Stack-Tree-Desc
As such, we only need to have access to the tail of

each list in memory as computation proceeds. The rest of the
list can be paged out. When list x is appended to list y, it is
not necessary that the head of list x be in memory, the append
operation only establishes a link to this head in the tail of y.
So all we need is to know the pointer for the head of each list,
even if it is paged out. Each list page is thus paged out at

most once, and paged back in again only when the list is
ready for output. Since the total number of entries in the lists

is exactly equal to the number of entries in the output, we
thus have that the I/O required on account of maintaining lists
of results is proportional to the size of output (provided that
there is enough memory to hold in buffer the tail of each list:
requiring two pages of memory per stack entry — still a
requirement within reason). All other I/O activity is for the
input and output. This leads to the desired linearity result.

Theorem4 The space and time complexities
ofAlgorithmStack-Tree-Anc are O (jAListj+jDListj
+jOutputListj), for both ancestor-descendant and parent-
child structural relationships.

The I/O complexity of Algorithm Stack-Tree-Anc is
O(jAListj B + jDListj B + jOutputListj B), for both
ancestor-descendant and parent-child structural
relationships, where is the blocking Factor.

4. EXPERIMENTAL EVALUATIONS

In this section, we present the results of an actual
implementation of the various join algorithms for XML data
sets. Due to space limitations, we evaluate only the
structural join algorithms we introduce in this paper,
namely, TREE-MERGE JOIN(TMJ) and STACK-TREE
JOIN (STJ). Once more, the output can be sorted in two
ways, based on the “ancestor” node or the descendant”
node in the join. Correspondingly, we consider two flavors
of these algorithms, and use the suffix “-A” and “-D” to
differentiate between these. The four algorithms are thus
labeled: TMJ-A, TMJ-D, STJA and STJ-D.

 For reasons of space, we omit detailed comparison

of our structural join algorithms with traversal-style
algorithms, and with traditional relational join algorithms in
a commercial database. As expected, the performance of the
traversal-style algorithms degrades considerably with the
size of the dataset, and yields very poor performance
compared with our structural join algorithms. Also,
consistent with the results of [29], structural join algorithms
(implemented outside the database) perform significantly
better than native relational DBMS join algorithms, even in
the presence of indexes.

We implemented the join algorithms in the TIMBER

XML query engine. TIMBER is an native XML query
engine that is built on top of SHORE [5]. Since the goal of
TIMBER is to efficiently handle complex XML queries on
large data sets, we implemented our algorithms so that they
could participate in complex query evaluation plans with
pipelining. All experiments using TIMBER were run on a
500MHz Intel Pentium III processor running WindowsNT
Workstation v4.0. SHORE was compiled for a 8KB page
size. SHORE buffer pool size was set to 32MB, and the
container size in our implementation was 8000 bytes.

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

10

All numbers presented here are produced by running

the experiments multiple times and averaging all the
execution times except for the first run (i.e., these are warm
cache numbers).

Algorithm Stack-Tree-Anc (AList, DList)
 Assume that all nodes in AList and DList have the same

DocId
 AList is the list of potential ancestors, in sorted order of

SPos
 DList is the list of potential descendants in sorted order

of SPos
anc = AList->FNode; des = DList->FNode; OutputList =
NULL;
while (the input lists are not empty or the stack is not empty)
{
if ((anc.SPos > stack->top.EPos) andand (des.SPos > stack-
>top.EPos)) {
/* time to pop the top element in the stack */

tuple = stack->pop();
if (stack->size == 0) {

append tuple.inherit-list to OutputList }
else {

append tuple.inherit-list to tuple.self-list
append the resulting tuple.self-list to stack-

>top.inherit-list
}
}
 else if (anc.SPos < des.SPos) {

stack->push(anc)
anc = anc->NxtNode }

else {
for (anc1 = stack->bottom; anc1 ! = NULL;

anc1 = anc1->up)
{

 if (anc1 == stack->bottom) append
(anc1,des) to OutputList

 else append (anc1,des) to the self-list of
anc1
}

 des = des->NxtNode
 }
}

Figure.10. Algorithm Stack-Tree-Anc with output in
sorted ancestor order

5. WORKLOAD

For our workload, we used the IBM XML data
generator to generate a number of data sets, of varying sizes
and other data characteristics, such as the fan out
(MaxRepeats) and the maximum depth, using the
Organization DTD presented in Figure 11. We also used the
XMach-1 [1] and XMark [2] benchmarks, and some real

XML data. The results obtained were very similar in all
cases, and in the interest of space we present results only for
the largest organization data set that we generated. This data
set consists of 6.3 million element nodes, corresponding to
proximately 800MB of XML documents in text format. The
characteristics of this data set in terms of the number of
occurrences of element tags are summarized in Table 1.

We evaluated the various join algorithms using the set of
queries shown in Table 1. The queries are broken up into two
classes. QS1 to QS6 are simple structural relationship
queries, and have an equal mix of parent-child queries and
ancestor descendant queries. QC1 and QC2 are complex
chain queries, and are used to demonstrate the performance of
the algorithms when evaluating complex queries with
multiple joins in a pipeline.

A. Detailed Implementation:

The focus in the experiments is to characterize the
performance of the four structural join algorithms, and
understand their differences. Before doing so in the following
subsections, we present here some additional detail regarding
the manner in which these were implemented for the
experiments reported. Our choice of implementation, on top
of SHORE and TIMBER, was driven purely by the need for
sufficient control the algorithms themselves could just as well
have been implemented on many other platforms, including
(as new join methods) on relational databases.

All join algorithms were implemented using the

operator iterator model [15]. In this model, each operator
provides an open, next and close interface to other operators,
and allows the database engine to construct an operator tree
with an arbitrary mix of query operations (different join
algorithms or algorithms for other operations such as
aggregation) and naturally allows for a pipelined operator
evaluation. To support this iterated model, we pay careful
attention to the manner in which results are passed from one
operator to another.

Algorithms such as the TMJ algorithms may need to

repeatedly scan over one of the inputs. Such repeated scans
are feasible if the input to a TMJ operator is a stream from a
disk file, but is not feasible if the input stream originates from
another join operator (in the pipeline below it). We
implemented the TMJ algorithms so that the nodes in a
current sweep are stored in a temporary SHORE file. On the
next sweep, this temporary SHORE file is scanned. This
solution allows us to limit the memory used by TMJ
implementation, as the only memory used is managed by the
SHORE buffer manager, which takes care of evicting pages
of the temporary file from the buffer pool if required.
Similarly for the STJ-A algorithm, the inherit and self-lists

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

11

are stored in a temporary SHORE file, again limiting the
memory used by the algorithm.

In both cases, our implementation turns logging and

locking off for the temporary SHORE files. Note that STJ-D
can join the two inputs in a single pass over both inputs and
never has to spool any nodes to a temporary file.

<!ELEMENT manager

(name,(manager|department|employee)+)>
<! ATTLIST manager id CDATA #FIXED "1">
<!ELEMENT department (name, email?,

employee+, department*)>
<!ATTLIST department id CDATA #FIXED "2">
<!ELEMENT employee (name+,email?)>
<!ATTLIST employee id CDATA #FIXED "3">
<!ELEMENT name (#PCDATA)>
<!ATTLIST name id CDATA #FIXED "4">
<!ELEMENT email (#PCDATA)>
<!ATTLIST email id CDATA #FIXED "5">

Figure.11. DTD used in our experiments

Table 2

 Description of queries and characteristics of the data set

 Node Count

Manager 25,880
Department 342,450
Employee 574,530
Email 250,530

Query XQuery Path Expression Result

QS1
QS2
QS3
QS4
QS5

employee/email
employee//email
manager/department
manager/department
manager/employee

140,700
1 42,958

6,855
57,137
7259

QS6 manager/employee 0,774
QC1
QC2

manager/employee/email
manager/employee/email

7990
232,406

To amortize the storage and access overhead

associated with each SHORE object, in our implementation
we group nodes into a large container object, and create a
SHORE object for each container. The join algorithms write
nodes to containers and when a container is full it is written
to the temporary SHORE file as a SHORE record. The
performance benefits of this approach are substantial; we do
not go into details for lack of space.

B. STJ and TMJ, Simple Structural Join Queries

Here, we compare the performance of the STJ and
the TMJ algorithms using all the six simple queries, QS1–
QS6, shown in Table 1. Figure 12 plots the performance of
the four algorithms. As shown in the Figure, STJ-D
outperforms the remaining algorithms in all cases.

The reason for the superior performance of STJ-D is

because of its ability to join the two data sets in a single pass
over the input nodes, and it never has to write any nodes to
intermediate files on disk. From Figure 12(a), we can also see
that STJ-A usually has better performance than both TMJ-A
and TMJ-D. For queries QS4 and QS6, the STJ-A algorithms
and the two TMJ algorithms have comparable performance.

These queries have large result sizes (approximately

600K and 1M tuples respectively as shown in Table 1). Since
STJ-A keeps the results in the lists associated with the stack,
and can output the results only when the bottommost element
of the stack is popped, it has to perform many writes and
transfers of the lists associated with the stack elements (in our
implementation, these lists are maintained in temporary
SHORE files).

Furthermore, the effect of buffer pool size is likely
to be critical when one of the inputs has nodes that are deeply
nested amongst themselves, and the node that is higher up in
the XML tree has many nodes that it joins with. For example,
consider the TMJ-A algorithms, and the query
“manager/employee”. If many manager nodes are nested
below a manager node that is higher up in the XML tree, then
after the join of the manager node at the top is done, repeated
scans of the descendant nodes will be required for the
manager nodes that are descendants of the manager node at
the top. Such scenarios are rare in our data set, and,
consequently, the buffer pool size has only a marginal impact
on the performance of the algorithms.

C. Complex Queries

Here, we evaluate the performance of the algorithms
using the two complex chain queries, QC1 and QC2, from
Table 1. Each query has two joins and for this experiment,

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

12

both join operations are evaluated in a pipeline. For each
complex query one can evaluate the query by using only
ancestor-based join algorithms or using only descendant-
based join algorithms. These two approaches are labeled with
suffixes “-A2” and “-D2” for the ancestor-based and
descendant-based approaches respectively.

The performance comparison of the STJ and TMJ
algorithms for both query evaluation approaches (A2 and D2)
is shown in Figure 11. From the figure we see that STJ-D2
has the highest performance once again, since it is never has
to spool nodes to intermediate files.

Figure.12(a). STJ and TMJ, simple queries: QS1, QS6

Matchings between pairs of trees in memory has
been a topic of study in the algorithm community for a long
time (e.g., see [22] and references therein).

The algorithms developed deal with many variations

of the problem but unfortunately are of high complexity and
always assume that trees are entirely memory resident. The
problem also has been considered in the programming
language community, as it arises in various type checking
scenarios but once again solutions developed are geared
towards small data collections processed entirely in main
memory.

Figure.12(b). STJ and TMJ, complex queries: QC1,
QC2

 Jacobson et al. [16] present linear time merging-
style algorithms for computing the elements of a list that are
descendants/ancestors of some elements in a second list, in
the context of focusing keyword-based searches on the Web
and in UNIX-style file systems. Jagadish et al, [17] present
linear time stack-based algorithms for computing elements of
a list that satisfy a hierarchical aggregate selection condition
wrt elements in a second list, for the directory data model.
However, none of these algorithms compute joins results,
which is the focus of our work.

Join processing is central to database
implementation and there is a vast amount of work in this
area [15]. For inequality join conditions, band join [11]
algorithms are applicable when there exists a fixed arithmetic
difference between the values of join attributes. Such
algorithms are not applicable in our domain as there is no
notion of fixed arithmetic difference. In the context of spatial
and multimedia databases, the problem of computing joins
between pairs of spatial entities has been considered, where
commonly the predicate of interest is overlap between spatial
entities [18, 24, 19] in multiple dimensions.

The techniques developed in this paper are related to

such join operations. However, the predicates considered as
well as the techniques we develop are special to the nature of
our structural join problem. In the context of semistructured
and XML databases, the issue of query evaluation and
optimization has attracted a lot of research attention. In
particular, work done in the context of the Lore database
management system [20, 21], and the Niagara system [23],
has considered various aspects of query processing on such
data. XML data and various issues in their storage as well as
query processing using relational database systems have
recently been considered in [14, 27, 26, 4, 13]. In [14, 27,
13], the mapping of XML data to a number of relations was
considered along with translation of a select subset of XML
queries to relational queries. In subsequent work [26, 4, 12],
the authors considered the problem of publishing XML
documents from relational databases.

Our work is complementary to all of these since our
focus is on the join algorithms for the primitive (ancestor-
descendant and parentchild) structural relationships. Our join
algorithms can be used by these previous works to advantage.
The representation of positions of XML elements used by us,
(DocId, StPos : EPos, LevelNo), is essentially that of
Consens and Milo, who considered a fragment of the PAT
text searching operators for indexing text databases [9], This
representation was used to compute containment relationships
between “text regions” in the text databases. The focus of that
work was solely on theoretical issues, without elaborating on
efficient algorithms for computing these relationships.

Finally, the recent work of Zhang et al. [29] is

closely related to ours. They proposed the multi predicate
merge join (MPMGJN) algorithm for evaluating containment
queries, using the (DocId, SPos: EPos, LevelNo)
representation. The MPMGJN algorithm is a member of our
Tree-Merge family. Our analytical and experimental results
demonstrate that the Stack-Tree family is considerably
superior to the Tree-Merge family for evaluating containment
queries.

 International Journal of Computer Network and Security(IJCNS)
 Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283

www.ijcns.com

13

6. CONCLUSIONS
Now, We have identified a large optimal query

classes namely that is Z\,\\,α; Z\,\\,α,β and Z\,\\,α,β,γ
respectively and We have introduced a notion of matching
cross to address the problem of the suboptimality in holistic
XML clustering tree pattern matching algorithms. Based on
these results, we have planned a new holistic algorithm called
TreeMatch to achieve such abstract optimal query classes.
Finally, general experiments demonstrate the advantage of
our algorithms and verify the accuracy of abstract results.

REFERENCES
1. Boukottaya, C. Vanoirbeek, Schema matching for

transforming structured documents,The 2005 ACM
Symposium on Document engineering, Bristol, United
Kingdom.

2. G.Koloniari, E. Pitoura, Peer-to-peer management of
XML data, issues and research challenges, SIGMOD
Record 34 (2) (2005) 6–17.

3. R. Nayak, R. Witt, A. Tonev, Data mining and XML
documents, The 2002 International Workshop on the
Web and Database (WebDB 2002), June 24–27,
2002.

4. R. Nayak, M. Zaki (Eds.), Knowledge discovery

from XML documents, PAKDD 2006 workshop
proceedings,Lecture Notes in Computer Science, vol.

5. D.D. Chamberlin, J. Robie, and D. Florescu. Quilt:An
XML query language for heterogeneous data sources.
In Proceedings of WebDB, 2000.

6. N. Jardine, C.J. van Rijsbergen, The use of
hierarchical clustering in information retrieval,
Information storage and retrieval 7(1971) 217–240.

7. M.P. Consens and T. Milo. Algebras for querying
text regions. In Proceedings of PODS, 1995.

8. M. Hearst, J.O. Pedersen, Reexamining the cluster
hypothesis: Scatter/gather on retrieval results,
Proceedings of the ACM SIGIR Conference, Zurich,
Switzerland, 1996, pp. 76–84.

9. E.Rasmussen, Clustering algorithms, W. Frakes, R.
Baeza-Yates (Eds.), Information Retrieval: Data
Structures and Algorithms, Prentice Hall, 1992.

10. M. Halkidi, Y. Batistakis, M. Vazirgiannis,
Clustering algorithms and validity measures,
SSDBM Conference, Virginia, USA, 2001.

11. T. Fiebig and G. Moerkotte. Evaluating queries on
structure with access support relations. Proceedings of
WebDB, 2000.

12. D. Florescu and D. Kossman. Storing and querying
XML data using an RDMBS. IEEE Data
Engineering Bulletin, 22(3):27–34, 1999.

13. G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2), 1993.

14. G. Jacobson, B. Krishnamurthy ,D. Srivastava, and
D. Suciu. Focusing search in hierarchical structures
with directory sets. In Proceedings of CIKM, 1998.

1N.Kannaiya Raja received degree MCA from Alagappa
University and ME from Anna University Chennai in 2007

joined assistant professor various
engineering colleges in Tamil Nadu
affiliated to Anna University and has
eight years teaching experience and his
research works in deep packet
inspection. He has been session chair in
major conference and workshops in
computer vision on algorithm papers,
network, mobile communication,

image processing papers and pattern reorganization. His
current primary areas of research are packet inspection and
network. He is interested to conduct guest lecturer in various
engineering in Tamil Nadu.

2Dr.K.Arulanandam received PhD doctorate degree in 2010
from Vinayaka mission university Salem. He has twelve year
teaching experience in various engineering colleges in Tamil
Nadu which are affiliated to Anna University and his research
experience network, mobile communication networks, image
processing papers and algorithm papers

3P.Umadevi received degree BE from Madras in 2001 and
M.E from Anna University Chennai in 2008 joined assistant

professor in various engineering
colleges in Tamil Nadu affiliated to
Anna University and has six years
teaching experience and her research
works in Cryptography. His current
primary areas of research are packet
inspection and network. She is interested
to conduct conference and guest lecturer

in various engineering in Tamil Nadu.

4 A.Balakrishnan received degree B.E Computer Science and
Engineering from Anna University Chennai. Now pursuing

ME Computer Science and Engineering
in Arulmigu Meenakshi Amman College
of Engineering affiliated to Anna
University Chennai.

