

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

Enhancement of Hierarchical Key Management Scheme of
Secure Multicast Transmission for Overlay Networks

1P.G.Kathiravan, 2C.Rajan, 3Dr.N.Shanthi,

1,2,3Department of Information Technology, K.S.Rangasamy college of Technology (Autonomous),
Anna University, Coimbatore, Tamilnadu, India.

1ask2kathiravanit@gmail.com,2rajanksrct@gmail.com,3shanthimoorthi@yahoo.com.

Abstract-Group communication security is needed
to protect sensitive information. A group key is
shared by all users under secure group
communication model. The group key is used to
encrypt data transmitted to the group. The group
membership is dynamic and requires new key for
membership changes. Secure multicast transmission
schemes are used to transfer data to a set of nodes.
Membership in secure multicast groups is dynamic
and requires multiple updates in a single time
frame. Storage cost and rekeying cost are considered
in the secure multicast transmission. The system
manages long standing members and shortly lived
members separately. Long standing members need
to store smaller number of keys than short-lived
members. The system manages variable storage
levels for key management. Hierarchical key
management algorithm is used to manage group key
values. The system manages membership addition
and removes operations. The key management
scheme is not optimized for overlay networks, End
node based multicast transmission is not optimized,

Traffic overhead is high and Transmission and
listen mode energy levels are not managed problems
are identified from the existing security models. The
secure multicast transmission supports key
management under multicast groups. The storage
and key revocation operations are managed by the
system. The system is enhanced to manage keys
under overlay networks. The traffic and energy
control mechanisms are integrated with the system.
The system is designed to manage storage and key
revocation process. Multicast group and key
management operations are integrated in the
system. The system is enhanced to manage group
keys under overlay network environment. The key
management messages are controlled in the system.

Keywords: Multicast, rekeying, Hierarchical
key management, revocations, Overlay
networks.

1.INTRODUCTION

Applications such as conferencing,

distributed interactive simulations, networked
gaming, and news dissemination are group-
oriented. In these applications, it is necessary
to secure the group communication as the data
are sensitive or it requires the users to pay for
it. In the algorithms for secure group
communication, a group key is shared by all
the users. The group key is used to encrypt
data transmitted to the group. The group
membership is dynamic. When group
membership changes, to protect the

confidentiality of the current users, a new
group key needs to be shared by the users.

The dynamics of the group membership
can be handled under two settings. In the first
setting, a central group controller manages the
group membership and the users do not have
the necessity to communicate among
themselves. Scenarios like pay TV, news
dissemination, stock information, etc., are in
this category. In these scenarios, typically, the
group size is large and geographically
disparate. In the second setting, the group
members collaborate to agree upon a common
group key [1]. Applications like conferencing
and distributed interactive simulation fall

74

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

under this category. The group sizes in such
applications are typically small and justifies
the usage of the relatively high end
computation required by the group key
agreement techniques [2]. In this work, we
consider the first setting where a large group of
users is managed by a group controller and
consider the cost of membership handling in
such applications.

When a user is admitted to the group, the

group controller changes the group key and
securely unicasts it to the joining user. To send
the new group key to the current users, the
group controller encrypts it with the old group
key and multicasts it to them. Thus, the cost of
rekeying for the group controller, due to a
joining user is small. However, when a user is
revoked, i.e., the user leaves or is forcefully
removed from the group, the group controller
needs to securely unicast the new group key to
each of the remaining users. Toward this, the
group controller encrypts the new group key
with the personal keys of each of the
remaining users and unicasts each message to
the respective user. The cost of this process is
O(N) symmetric key encryptions and O(N)
messages. Thus, for a large group, revoking
users from the secure group is an expensive
operation.

Many solutions have been proposed for

efficiently handling a single membership
change, i.e., a single join or revocation of a
user. In these solutions, for a group of N users,
the group controller distributes the new group
key in O (logN) encrypted messages. We note
that in these solutions, the rekeying cost, i.e.,
number of encryptions performed and
messages transmitted by the group controller,
for a joining user is increased from two to
O(logN). However, techniques suggested
reduce the join cost to nearly constant and as
such have been used by other approaches [5],

[6]. On the other hand, the cost for revoking a
user is reduced from O(N) to O(logN)
encrypted messages. However, to handle
multiple membership changes, the group
controller repeats the process of revocation for
each revoked user. Optimizations such as batch
or periodic rekeying reduce this cost to some
extent. However, even in these solutions, the
cost of revocation is high. Moreover, as the
group controller needs to interrupt the group
communication during the rekeying, the
resulting delay can be unreasonable for many
applications. Thus, efficient distribution of the
new group key for multiple membership
changes is a critical problem in secure group
communication.

 One approach to revoke multiple users
is to associate a key with every nonempty
subset of users in the group. Thus, if one or
more users are revoked, the group controller
uses the key associated with the subset of the
remaining users to encrypt the new group key
and transmits the new group key to them. The
advantage of this approach is that the
communication overhead is only one message
for revoking any number of users.

However, the number of keys stored by
the group controller and the users is
exponential in the size of the group. In this
paper, we describe a family of key
management algorithms that reduce the cost
due to multiple user revocation while keeping
the storage cost manageable. The goal of the
paper is to evaluate trade-off between storage
and revocation cost. Storage is computed in
terms of keys that each user maintains [9]. And
revocation cost is computed in terms of the
encryptions performed, and the number of
messages transmitted, by the group controller.
Similar to the algorithms, we assume that the
communication from the group controller is
broadcast in nature. Using our algorithms, the

75

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

group controller can efficiently distribute the
group key.

Notations. We use k(m) to denote that

message m is encrypted with key k. Only users
who know k can decrypt this message. The
adversary can listen to all messages sent over
the network. Hence, for simplicity, we assume
that all communication is broadcast in nature,
and hence, we do not explicitly identify the
intended recipients of a message.

I. RELATED WORK

 Other approaches to address the
problem of revoking multiple users are
proposed in [3]. The group controller
maintains a logical hierarchy of keys that are
shared by different subsets of the users. To
revoke multiple users, the group controller
aggregates the entire necessary key updates to
be performed and processes them in a single
step.

The group controller interrupts the
group communication until all the necessary
key updates are performed, and then,
distributes the new group key to restore group
communication. This interruption to group
communication is undesirable for real-time and
multimedia applications. To handle multiple
group membership changes, the group
controller performs periodic rekeying, i.e.,
instead of rekeying whenever group
membership changes, the group controller
performs rekeying only at the end of selected
time intervals. However, the revoked users can
access group communication until the group is
rekeyed.

This can either cause monetary loss to

the service provider or compromise
confidentiality of other users. The group
controller maintains a logical hierarchy of keys

similar to the solution. To revoke multiple
users, the group controller distributes the new
group key by using keys that are not known to
the revoked users.

However, this solution achieves a good

rekeying cost only if the size of the revoked
users is either very small or very large. In the
above schemes, the logical key tree structure
tends to become unbalanced after some
membership changes and results in tree which
has large height (O (N)). As the height of the
tree determines the rekeying cost, several
approaches [7] have been proposed to address
this issue. These approaches focus on
algorithms for reorganizing the tree structure
that becomes unbalanced after a few
membership changes.

However, the basic rekeying algorithm.

The approaches in these works are orthogonal
to our algorithms in that the approaches from
these works can be used to balance the tree
used in our algorithms.

The authors describe an information-

theoretic approach for analyzing key-tree-
based protocols and show interesting
relationships among the storage cost, the
number of rekeying messages, and the
resistance against colluding users. They
describe an optimal key distribution protocol
which is weakly collusion resistant, i.e., it
cannot tolerate collusion of two users.

76

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

 (a) (b)
 Fig. 1. Partial view of (a) basic structure (b) hierarchical
structure.

The authors focus on the storage versus
communication trade-offs in secure
conferencing given offline and interactive key
distribution models. However, their
approaches do not address the issue of
rekeying as they focus on a fixed-size coalition
of attackers and perform an appropriate key
distribution to address this threat model. Luby
and Staddon focus on the trade-off between the
storage cost and the rekeying cost. They
identify a lower bound on the rekeying cost
based on the number of keys that the users
maintain. Their work is based on previous
work and assumes that an upper bound on the
number of users, say x, that need to be revoked
is known in advance. The key distribution
algorithm uses the value of x to distribute the
keys. Hence, if the number of users that need
to be revoked is more than x, then their
algorithm fails to revoke them using the shared
keys. By contrast, our algorithm does not
assume that the number of revoked users is
known in advance.

II. KEY MANAGEMENT ALGORITHMS

3.1 The Basic Structure

We arrange a group of K users as
children of a rooted tree, as shown in Fig. 1a.
Let R be the root node. We use the tuple <R,
u1, u2,,uK> to denote the basic structure.

The key management algorithm we use
for the basic structure is the complete key
graph algorithm. In this algorithm, for every
nonempty subset of users, the group controller
provides a unique shared key which is known
only to the users in the subset. The group
controller gives these keys to the users at the
time of joining the group. Of the keys that a
user, say ui, receives: 1) one key is associated
with the set { u1, u2,,uK}, and hence, is
known to all the users and 2) one key is
associated with the set {ui} The former key,
say kR, is the group key, whereas the latter key
is the personal key. Thus, the number of keys
stored by the group controller is 2K-1 and the
number of keys held by each user is 2K-1. Now,
we consider the process of rekeying in this
scheme when one or more users are revoked
from the group. The proof of the following
theorem describes the simple rekeying process
for user revocation:

3.2The Hierarchical Key Management
Algorithm

In our hierarchical algorithm, we compose
smaller basic structures in a hierarchical
fashion. To illustrate the hierarchical structure,
consider the sample structure <R, R1, R2, . . .,
Rd> shown in Fig. 1b, where each further
consists of the basic structure <Ri, ui1, ui2, . ,
uid>. The parameter d is the number of
elements in a basic structure and can be
considered as the degree of the hierarchy. We
note that the degree can be different for
different nodes in the hierarchy. However, for
the sake of simplicity, in this section, we
assume that the nodes in the hierarchical
structures have a uniform degree d.

U
1

U
2

U
K

R
R

R
R

R

U
U

L
e

Le
vel

L
e

77

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

Now, each of the basic structures of the
form <Ri, ui1, ui2, . . . , uid > is associated with
the shared keys. The structure at next higher
level, <R, R1, R2, . . ., Rd>, is also associated
with shared keys. The personal key associated
with Ri, 1 < i < d in structure <R, R1, R2, . . .,
Rd> is the same as the group key of the
structure <Ri, ui1, ui2, . . . uid>. Furthermore,
the structure <R,R1,R2 . . .Rd> is associated
with shared keys. Now, each user in the basic
structure <R, ui1, ui2 . . . uid > is provided with
any shared key that is provided to Ri in the
structure <R, R1,R2, . . .Rd>. To illustrate our
hierarchical algorithm, we consider four
examples for d = N, 2, 3, 4. In the hierarchical
structure, we denote the key associated with a
subset <a, b . . .z> by Kab…Z .

III. MEMBERSHIP ADDITION COST

When users get revoked from a
hierarchical structure, it does not change the
number of keys that the existing users would
have although some of the keys that they
maintain may no longer be needed. For
example, suppose we begin with a basic
structure of degree 4 where each user has eight
keys. If u4 is revoked, then the basic structure
still has a degree 4 but it now has one empty
slot. The remaining users continue to have
eight keys although some keys are currently
useless. When a new user is added to this
structure at a later point, these keys would be
updated and the revised keys would be given
to the new user.

Adding users to a basic structure with

empty slots. We first describe the algorithm
where enough empty slots are available in the
hierarchical structure. The procedure for
adding a user to the group is as follows: the
group controller changes the group key and
distributes it to the current users of the group
and to the joining user. The group controller

also distributes the necessary keys to the
joining user. If multiple users are to be added,
the group controller generates the new group
key and distributes it to each of the new users
in a separate unicast message which also
contains other keys that are needed by that
user. First, the group controller selects a basic
structure with empty slots in the hierarchy and
adds the new user to this basic structure. Next,
the group controller generates a new group key
and distributes it to the current users using by
encrypting it with the old group key. In this
message, it also notifies the users about the
location of the new user. Subsequently, the
current users use the following rule to generate
the keys that are given to the new user is the
new group key, f is a one-way hash function,
and ki is the key that is known to any current
user that is part of the same hierarchy as the
joining user. The group controller also
performs the same hash computation and
identifies the shared keys that the joining user
would get based on its position in the
hierarchical structure. (Note that the joining
users only get the updated shared keys, and
hence, cannot compute old shared keys.)
Subsequently, the group controller sends the
new group key and the updated shared keys to
the joining user. It follows that the number of
encryptions performed by the group controller
is equal to the number of keys that need to be
distributed to the joining user, i.e., O(2d-1
log(N). Thus, the cost of join is equal to the
number of keys that each user maintains.

Our approach of using hash functions to

change the group key is used by others [6] and
is acceptable even if it increases collusion
possibility as described. Though, it is possible
to address collusion by changing the
intermediate keys explicitly, this increases the
join cost significantly. However, one important
advantage is that the cost of join is non critical
using our algorithms, i.e., the join handling do

78

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

not have to be performed immediately,
whereas revocation has to be performed
immediately. Join can be handled in
background as the new user does have the
group key right away.Increasing the height of
the hierarchy. Adding a level in the hierarchy
is straightforward. Let T be the current tree
with root node R. To add a level in the
hierarchy, we can create a new root R1, let R
be its child and create additional children for
R1. Note that in this case, users can continue to
keep the keys that they have. They need to
receive additional keys for this new hierarchy.
However, similar to join process for a basic
structure with empty slots, the cost of
increasing the height of hierarchy is small.We
do not propose new schemes for reducing the
height of hierarchy when users leave. Most
group key management algorithms utilize
periodic rekeying to deal with lost keys,
collusion, etc. At the time of periodic rekeying,
the height can be reduced using techniques
similar to [4].

IV. ADAPTING TO HETEROGENEITY OF
USERS

Our algorithms also enable the group

controller to deal with heterogeneous set of
users who have different capabilities. We
illustrate this by a simple example. Consider
the case where the basic structure at the root
level has a degree 2, the users rooted at the left
child of the root can only maintain a small
number of keys, and the users rooted at the
right child of the root can maintain a large
number of keys. Now, we can use a smaller
degree for the tree rooted at the left child and a
larger degree for the tree rooted at the right
child. With such a design, the users in the left
tree will receive only a small number of keys,
whereas the users in the right tree will receive
a large number of keys. It follows that for the
right tree, the group controller can take

advantage of reduced rekeying cost provided
by the use of a tree with larger degree, while
still allowing users with lower capabilities to
participate in the group communication.

Based on the above discussion, we can use

a higher degree for the basic structure at the
root to accommodate users with multiple
storage requirements. In such a key tree
structure, the users rooted at each child node
have the same requirements and capabilities.
Thus, by partitioning the group at the basic
structure, the group controller can deal with
heterogeneous users in a fine-grained manner.
Specifically, we examined two cases of
variations in the degree of the key tree. In each
case, the group controller maintains a key tree
of different degrees for two or more child
nodes of the root node. We evaluate our
algorithms using simulations on groups of size
256, 512, and 1,024 users.

V. REDUCING STORAGE
REQUIREMENTS FURTHER

we provide additional approaches for
reducing the storage requirements of users.
The first approach is based on [8] and is aimed
at providing adaptation where long-term users
are provided preferential treatment in that they
store less keys and need to perform less
computation when group membership changes.
The second approach, reduces the storage by
permitting users to generate shared keys using
their personal keys. This scheme is suited in
situations where group revocations occur at
some periodic times. For brevity, we only
present the scheme for the basic structure. It
can be extended in a straightforward manner
for hierarchical structure.

‘
6.1 Adapting for Long-Term and Short-Term
Users

79

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

Key assignment technique to adapt to
the storage requirements of long-term and
short term users. Long-term users are those
users who have been in the group a relatively
longer period than the other group users.
Short-term users are users who have been in
the group for a relatively short time. In our key
assignment, we assign keys in such a way that
the longer a user stays in the group, the
number of keys stored by that user is relatively
smaller than the keys stored by short-term
users. We can view this result as rewarding
long-term users for their long standing
membership.

One-way chains are of the form h(s),

h2(s), . . . hm(s), where h is a one-way hash
function and s is a random seed. Hence, using
an intermediate value hks in this chain, the
higher values hk+1(s), hk+2(s) . . . , in the chain
can be generated by using h. Furthermore, due
to the one-way nature of the hash function, by
knowing an intermediate value hks, it is not
possible for a user to deduce the previous
values hk-1

(S), hk-2(s) . . . , in the hash chain.
The above hash chain can be trivially extended
to the case where different one-way functions
are used in each step. In this case, the hash
chain would be of the form h1(s) h2(h1(s)),
h3(h2(h1(s))) … . . . ,. Note that even in this
case, if a node has a value in this hash chain,
then it can find all subsequent values.
However, it cannot find previous values in the
hash chain.

Now, using these concepts, we describe

our technique for arranging the keys among the
users. For a group of d users u1, u2; . . . , ud, we
use d - 1 (or more) hash functions h1,h2

 . . ,.
Now, consider a user subset {ua, ub, uc}, where
a < b < c. For such a subset, we consider the
chain <ua, ub, uc>. For such a chain, we assign
secrets as follows: ua is assigned a seed secret
sa ub is assigned secret hb-a(sa), and uc is

assigned hc-b(hb-a(Sa). Thus, the secret provided
to uc (respectively, ub) can be used for
communicating with the set {a, b, c}
(respectively, {a, b}. For example, in set {u2,
u3, u5}, u2 will get s2, u3 will get h1S2, and u5
will get h2(h1s2). Thus, by having only a small
set of secrets (some), users can generate
secrets needed for different subsets.

However, a single one-way hash chain

is not sufficient to assign keys to every
possible subset of the users. For example, in
the above scenario, there is no unique secret
for the set f(ua, uc). Since the basic key
structure requires that a key be maintained for
each subset of users, there is a need for
additional one-way hash chains. Hence, there
is need for multiple one-way hash chains to
assign keys to all possible subsets of users.
Next, we present our key assignment technique
that assigns keys to every possible user subset.

Our key assignment is inductive in nature.

It also has the property that in any chain, the
users are labeled in increasing order.
Moreover, the last user added to the set is
present in every chain. For n = 1, i.e., where
there is only one user, say u1, there is only one
chain (u1). For inductive case, assume the key
assignment for n users and we need to obtain
the key assignment for n +1 users. Let un be
the user with the highest label in the existing
system and un+1 be the new user. Now, based
on our assumptions, un is the last user in all the
one-way hash chains formed for the set of n
users. The list of hash chains for n +1 users is
obtained as follows:

 For each hash chain, include a hash

chain where un+1 is added to the end of
that hash chain.

 For each hash chain, include a hash
chain where un is replaced by un+1.

80

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

Adaptive storage. Consider the key
distribution for a group of n users, say u1, u2, . .
. , un. Observe that u1 only needs to store one
key, namely, its seed s1. User u2 needs to store
two keys s2 and h(s1). User u3 needs to store
four keys, and so on. Thus, storage of users
added earlier is less compared to that of
recently added users.

Revocation of users. When a user, say um um,
is revoked, the keys known to um cannot be
used. However, the remaining users can
continue to communicate using their secrets
that were not known to um. Since the original
setup ensures that given any subset of users,
there exists a key that is known to all of them,
this property continues to be true of remaining
users as well. We leave it to the reader to
verify that the adaptively properties continue
to be satisfied, i.e., the user with the smallest
label will have one key, the next will have two,
and so on. Furthermore, observe that the set of
keys that users have is exactly those that they
would have if we begin with a group
consisting of the smallest logical label and
continue to add users based on their increasing
label.

Note, however, that with this approach,
even if a user is revoked, its logical label
cannot be used when a new user is added
subsequently. Instead, when a new user is
added, its logical label should be larger than all
existing users. For example, if the current
group is {u1, u2, u3}, user u2 leaves, and a new
user is added, it should be given a logical label
of u4. number of keys that users need to
maintain. However, this requirement
necessitates the need for For example, for the
set {u1, u3, u4}, hash function h3 is needed for
the one-way chain <u1, u4>. For this reason, we
have included additional hash functions. If
periodic rekeying is used to rekey all the keys

in the system, then the user numbering can be
restored after periodic rekeying. Furthermore,
periodic rekeying would also assist in
hierarchical setting. In particular, with
hierarchical structure, the group controller
could change the basic structures to which
users belong. By changing the basic structures
in this manner, it would be possible to provide
additional trade-off between keys maintained
by users and the length of time they are part of
the group.

6.2 Another Approach Using a Family of
One-Way Functions

 We give an additional scheme where
group revocations occur at periodic times, for
example, once a day. Hence, after one
rekeying, there is substantial time. Hence, in
such an approach, we can have the rekeying
cost split into a critical cost and no critical
cost. Our technique has the following attractive
features:

 The group controller has to store only
N keys, one for each user. The
remaining keys are generated using
these values. The cost of storage for the
group controller using this scheme is
lower than that of LKH, where 2N - 1
keys need to be stored and that of the
complete key tree algorithm where
2d.N keys have to be stored.

 The cost of storage at the users is
reduced by a factor of 2 when
compared the storage required for the
complete key tree algorithm. The
revocation cost remains the same as the
key distribution is essentially our
original complete hierarchical
structure.

81

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

 The cost of updating the shared keys
during a membership change is
O(logN) messages for the group
controller.

 We introduce additional notation used
in this technique. We use gi to denote the ith
member of a family of one-way functions g.
The property of a one-way function is such
that, given x, it is easy to compute g(x) but not
the vice versa. When a one-way function g is
applied to a key k, we say that the resulting
value is a blinded value of that key. Blinded
keys that need to be given to a user i are
blinded using the one-way function gi.

VI. SECURITY MODELS FOR OVERLAY
NETWORKS

The system is designed to manage storage
and key revocation process. Multicast group
and key management operations are integrated
in the system. The system is enhanced to
manage group keys under overlay network
environment .The key management messages
are controlled in the system

 The system is divided as five modules.

They are overlay network construction, storage
management, key management, rekeying
management and transmission controller. The
system is designed to handle group
communication with security under overlay
networks. The storage overhead is managed by
the system using lifetime factors. The key
issue and key revocation operations are
managed by the system

7.1. Overlay Network Construction

The wireless nodes are grouped to form
overlay networks. The overlay networks are
used to extend the coverage of the network
.The node to node communication is used in

the overlay networks. Neighborhood
verification is used for overlay updates

7.2. Storage Management

 The key values are maintained under
the node storage area .The storage is updated
with other nodes key value during key
revocation process .The lifetime is considered
in the key update process .Each node maintains
key values for different set of nodes

7.3. Key Management

The group key values are maintained in
the network. The multicast group nodes are
assigned with the same key values. Each node
maintains two level keys .Node key and group
key are used in the system

7.4. Rekeying Management

The rekeying process is done at group
updates. The key revocation is initiated at the
time of node entry and node removal. The key
revocation process updates key values of the
entire group. The system reduces the rekeying
intervals

7.5. Transmission Controller
The data transmission activities are managed
under the transmission controller. Key request
and key revocation operations are initiated by
message communication .The key request
messages are limited by the system .The key
value is used in the data security process

VII. CONCLUSION

The secure multicast transmission supports
key management under multicast groups. The
storage and key revocation operations are
managed by the system. A family of
algorithms is used to provide a trade-off
between the number of keys maintained by the
users and the time required for rekeying due to
the revocation of multiple users. The

International Journal of Computer Network and Security(IJCNS)

Vol 4. No 1. Jan-Mar 2012 ISSN: 0975-8283
www.ijcns.com

algorithms reduce the cost of rekeying. The
schemes are based on the use of one-way hash
chains that allow one to reduce the number of
keys further without increasing the rekeying
cost.

The algorithm enables the group

controller to deal with heterogeneous set of
users that have different capabilities. With this
capability, users with high capability can
benefit from it. The system is enhanced to
manage keys under overlay networks. The
traffic and energy control mechanisms are
integrated with the system. The system
supports overlay network multicast process.
Storage usage is controlled by the system.
Traffic levels are managed by the system. The
system reduces the energy levels.

AUTHOR’S PROFILE

P.G.Kathiravan received the B.Tech in Information

Technology from The Kavery
Engineering College in Anna
University, Chennai in 2010. He
is currently doing M.Tech
Information Technology from
K.S. Rangasamy College of
Technology (Autonomous), Anna
University, Coimbatore. His area
of interest is Network Security,
Cloud Computing, and Operating

System

C.Rajan received his B.E Degree in Computer Science

and engineering from SSN
College of engineering at
University of Madras. Then he
obtained his Master’s degree in
Computer Science. He is pursuing
Ph.D at Anna University of
Technology, Coimbatore. He is
currently working as an Assistant
Professor in the Department of
Information Technology, KSR

College of Technology. He has 8 years of teaching
experience. He has presented 06 papers in various
national and international conferences. His research

interests Multicasting Networks, Key Management and
Network Security.

Dr.N.Shanthi received the Ph.D. degrees in computer

sciences and Engineering from
the Periyar University, Salem,
India. She is the professor and
head of Department of
Information Technology, KSR
College of Technology. She has
18 years of teaching experience.
She has more than 13
publications at national and
international level. Her areas of

interest include Network security and Image Processing.

REFERENCES

[1] Y. Kim, A. Perrig and G. Tsudik, “Tree- Based Group
Key Agreement,” ACM Trans. Information and System
Security, vol. 7, no.1, pp.60-96, 2004.

[2] M. Manulis, “Security-Focused Survey on Group Key
Exchange Protocols,” Report 2006/395, Cryptology ePrint
Archive, http:// eprint.iacr.org/, 2006.

[3] F. Zhu, A. Chan, and G. Noubir, “Optimal Tree Structure
for Key Management of Simultaneous Join/Leave in Secure
Multicast,” Proc. Military Comm. Conf. (MILCOM), 2003.

[4] W.H.D. Ng, M. Howarth, Z. Sun, and H. Cruickshank,
“Dynamic Balanced Key Tree Management for Secure
Multicast Communications,” IEEE Trans. Computers, vol.
56, no. 5, pp. 577-589, May 2007.

[5] S. Zhu, S. Setia, S. Xu, and S. Jajodia, “Gkmpan: An
Efficient Group Rekeying Scheme for Secure Multicast in
Ad-Hoc Networks,” Proc. IEEE Mobiquitos ’04, pp. 42-51,
2004.

[6] Y. Sun, W. Trappe, and K.J.R. Liu, “A Scalable Multicast
Key Management Scheme for Heterogeneous Wireless
Networks,” IEEE/ACM Trans. Networking, vol. 12, no. 4,
pp. 653-666, Aug. 2004.

[7] M.H. Heydari, L. Morales, and I.H. Sudborough,
“Efficient Algorithms for Batch Re-Keying Operations in
Secure Multicast,” Proc. 39th Ann. Hawaii Int’l Conf.
System Sciences, vol. 9, 2006.

[8] J.H. Cheon, N. Jho, M. Kim, and E. Yoo, “Skipping,
Cascade, and Combined Chain Schemes for Broadcast
Encryption,” IEEE Trans. Information Theory, vol. 54, no.
11, pp. 5155-5171, Nov. 2008.

[9] Bezawada Bruhadeshwar and Sandeep S. Kulkarni,
“Balancing Revocation And Storage Trade-Offs In Secure
Group Communication” IEEE Transactions on Dependable
and Secure Computing, Vol. 8, no. 1, Jan-Feb. 2011.

82

